
The Design and Performance of the Rollback Chip:

Hardware Support for Time Warp

.0 11by" DTICTO" T IC *Jya-Jang
Tsai

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

D~rRtT~rON * .rA
Appoved io- u.i ,i~s,

Distribution UnL-it-d

Department of Computer Science

The University of Utah

October 1988

89 1 25 061

ABSTRACT

The Time Warp mechanism offers an elegant approach to attacking difficult

clock synchronization problems that arise in applications such as parallel discrete

event simulation. However, because Time Warp relies on a lookahead and roll-

back mechanism to achieve widespread exploitation of parallelism, the state of

each process must periodically be saved. Existing approaches to implementing

state saving and rollback are not appropriate for large Time Warp programs. A

component called the Rollback Chip (RBC) is proposed in this thesis to efficiently

implement these functions. Such a component could be used in a programmable,

special purpose paralle discrete event simulation engine based on Time Warp. The

algorithms implemented by the rollback chip are described, as well as mechanisms

that allow efficient implementation. Results of simulation studies are presented.

These results show that the rollback can virtually eliminate the state saving and

rollback overheads that plague current software implementations of Time \Varp.

: .- /

CONTENTS

ABSTRACT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

ACKNOW LEDGMENTS xi

CHAPTERS

1. INTRODUCTION .. 1

1.LTaxonomy of Simulation Models 1
1.1.1 Continuous vs. discrete 2
1.1.2 Time-driven vs. event-driven 2

1.2Techniques to Speed Up Simulation 3

1.3Parallel Discrete Event Simulation 5
1.3.1 The Clock Synchronization Problem 6
1.3.2 Solutions to the Deadlock Problem 7

1.3.2.1 Deadlock avoidance: 7
1.3.2.2 Deadlock detection and recovery: 8
1.3.2.3 Formalisms for parallel simulation: 8

1.3.3 Time Warp 9
1.3.3.1 Message processing and anti-messages: 10
1.3.3.2 Checkpoints and rollback: 11
1.3.3.3 GVT and fossil collection: 11
1.3.3.4 Other approaches to state saving (software and

hardware): 13

1.4Summary of the State of the Art 14

1.5Simulation Hardware 15
1.5.1 Existing machines 16

1.5.1.1 The Yorktown Simulation Engine (YSE) 16
1.5.1.2 The Hardware Logic Simulator (HAL) 16
1.5.1.3 The Zycad Logic Evaluator 16

1.5.2 The Utah Simulation Engine (USE) 17

1.6Organization of the Thesis 18

/f'...

• I I I I

2. THE ROLLBACK CHIP................................... 19

2.llnterface to the Rollback Chip 19

2.2The Memory Address Space 20

2.3RBC Data Structures 22
2.3.1 Mark Frames............................... 22
2.3.2 Written Bits. .. *.........................24
2.3.3 The Seldom Written Data Problem 24

2.4RBC Operations 25

3. MECHANISMS FOR EFFICIENT IMPLEMENTATION 28

3.1Earlier RBC Designs 29
3.1.1 A WB-based Rollback Chip...................... 30
3.1.2 An MIMU-based Rollback Chip.................... 31

3.2 Working Areas and Dynamic Growth of the Mark Frame Stack 31

3.3The RB Cache 33
3.3.1 Design 1: The Write-through Cache................ 33
3.3.2 Design 11: The Copy-back Cache.................. 37

3.4Rollback Histories 41

3.5Fossil Collection 46

3.6Dynam-ic Memory Allocation 48

3.7Multiple Processes per Processor 49

4. PERFORMANCE.. 50

4.lThe Simulation Model 50

4.2Simulation Methodology 53

4.3Relative Event Rate 53

4.4Hit Rate 54
4.4.1 The Affecting Factors. 54

4.5Miss Penalty 62
4.5.1 The Affecting Factors. 63

4.6Performance of the Rollback Operation 68
Vi

4.7Overall Performance 68

5. IMPLMENTATION OF THE RBC.......................... 73

5.lThe CPU 75

5.2The Control Unit 75

5.3The RB Cache 76

5.4The RBHistory Stack 76

5.5Overall Operation of the RBC 76

6. CONCLUSION.. 78

APPENDICES

A. AN MMU-BASED RBC................................... So

B. SIMULATION RESULTS.................................. 84

C. THE SIMULATOR....................................... 93

REFERENCES... 94

AvesonFo

LIST OF TABLES

B.1 Hit Rate degradation: for small grained computation event 85

B.2 Hit Rate degradation: for large grained computation event 86

B.3 Hit Rate degradation: for different organization in cache design 87

B.4 Hit Rate degradation: for different write policy in cache design 88

B.5 Miss Penalty: Blocks required to search for small grained computation 89

B.6 Miss Penalty: Blocks required search for large grained computation . 90

B.7 Miss Penalty: for small grained computation with READ/WVRITE=2 91

B.8 Miss Penalty: for large grained computation with READ/WVRITE=4 91

B.9 RBH updated and size 92

LIST OF FIGURES

1.1 Simulation taxonomy 1

1.2 Three queues of a logical process 10

1.3 One node of Utah Simulation Engine 17

2.1 Virtual memory space seen by the RBC 21

2.2 Address format used by the RBC 22

2.3 Data structures used by the RBC 23

2.4 Program to locate the most recent version of line. In practice, a block of
(say) 16 written bits are read in parallel and scanned using a priority
encoder .. 25

2.5 Example: seldom written data lost on ADVANCE operation 26

2.6 A cache-based rollback chip operations 27

3.1 The fields in a write-through cache entry 33

3.2 Write-through cache operations 35

3.3 Copy-back cache on READ and WRITE operations 38

3.4 Invalidation of cache entries on rollback 40

3.5 Example: lazy approach of clearing the WB by using tag 43

3.6 Update operation for RBH stack for rollback to frame dst 44

3.7 Updating RBH entries on rollbacks 45

4.1 The hit rate degradation with base set of parameters 55

4.2 The effect of the frequency of locality change on hit rate degradation 57

4.3 Hit rate degradation for small grained computation event 58

4.4 Hit rate degradation for large grained computation events 59

4.5 The effect of READ/WRITE ratio on hit rate degradation 60

4.6 The effect of cache organization on hit rate degradation 62

4.7 The effect of the number of frames in use on miss penalties 64

4.8 The effect of locality of address traces on miss penalties 65

4.9 The effect of READ/WRITE ratio on miss penalties 66

4.10 The effect of rollback distances on miss penalties 67

4.11 The size of the RBH stack and the number of updated entries on each
rollback 69

4.12 Overall degradation of using the RBC 71

5.1 Configuration for each node of the simulation engine 73

A.1 TLB entry at memory access operations 82

A.2 An MMU-based rollback chip operations 83

x

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to all of the people who have

contributed to this thesis. In particular, to my advisor, Richard Fujimoto, for

numerous patient discussions and constructive advice. I am also thankful to Gary

Lindstrom and Ganesh Gopalakrishnan, who pointed me to many interesting issues

about this work. Finally, to my parents I thank them with my greatest gratitute.

since without their everlasting love and unfailing faith I would not have remained

here and pursued my goals.

CHAPTER 1

INTRODUCTION

Computer simulation is a comparatively recent member of the family of mod-

elling techniques. However, it is perhaps the most widely used method today. A

classification tree of simulation methods is shown in figure 1.1.

SimulationZZ --,,
Continuous Discrete

Time-driven Event-driven

Figure 1.1. Simulation taxonomy

1.1 Taxonomy of Simulation Models

Divergent simulation methods have been developed for different applications.

An assembly line calls for a model that is quite different from one used for weather

prediction. Though divergent, simulation models can be classified into reasonably

well-defined categories. Some background of the terminology commonly used in

simulation is required for further discussion.

- un n ua j

2

Each component of the system being simulated is represented in the simulation

model by an entity. Each entity has zero or more attributes that describe its current

state. The collection of all attributes is defined to be the system state. The state

of each entity can be changed as the result of processing an event. The instants of

time at which events occur are referred to as event times. For example, a simulator

that models an airport might have terminals, departure flights, arriving flights etc.

as its entities. For departing flights, the attributes of interest might be the flight

number, the pilot, the scheduled departure time, the boarding gate, passenger list,

destination, etc. The departure of a flight changes the state of the airport, so it

is an event, and the actual departure time is the corresponding event time. The

following subsections will describe the most commonly used taxonomy of simulation

methods.

1.1.1 Continuous vs. discrete

A "continuous" model is one whose state varies (at least conceptually) con-

tinuously with time, e.g. fluid flow models. Such systems are usually described

by sets of differential equations with associated initial and boundary conditions.

Simulation models of this kind are heavily used in problems of mechanics, electrical

engineering, and economics. The intervals between events are infinitesimal.

On the other hand, the state of a "discrete" model varies at discrete points

in time. A model that simulates the interactions among customers and tellers

in a bank service or the airport example described above are typical examples.

Discrete simulation can be further divided into two sub-categories: time-driven

and event-driven.

1.1.2 Time-driven vs. event-driven

Events in time-driven simulations may only occur at pre-defined time steps. All

events that are designated to occur at the same simulated time are processed before

3

the simulation can proceed to events at later time steps. This method is suitable

for synchronous system where many events occur simultaneously (or modelling as

such does not significantly degrade accuracy), e.g. gate-level logic simulation.

Unlike time-driven, events in event-driven simulation may occur at any point

in simulated time. A convenient uniprocessor implementation of a discrete-event

simulation is to use an event-list. Events in the event list are sorted according to

their event times (which is also their execution order). The simulator repeatedly

removes the next event (the event with the smallest event time) from the event

lis,, advances its clock to the simulated time of that event, and then processes the

event.

The remainder of this thesis will deal exclusively in the realm of discrete-event

simulations.

1.2 Techniques to Speed Up Simulation

Computer simulation of large, complex systems remains a major stumbling

block in many research and development efforts today. Computation requirements

continue to grow and far exceed the capabilities of general purpose computing

hardware. The enormous amounts of computing time required to simulate large

communication networks, parallel computer architectures, and battlefield scenarios

(to name a few) hinder advances in systems design and development. In many

cases, complex simulations are impossible because the computation costs are pro-

hibitive. Several techniques have been developed to speed up simulations. Existing

techniques are surveyed below.

Current techniques for accelerating discrete simulation programs, and their re-

spective disadvantages, include:

* Vectorization techniques attempt to apply supercomputers to discrete event

simulation problems. Although some success has been obtained in time-

4

driven simulations of homogeneous systems, vectorizing hardware provides

little speedup for most event-driven simulations of practical interest [3].

" Functional specialization uses dedicated functional units to implement specific

sequential simulation functions (e.g., event list manipulation) [7]. This method

can provide only a very limited amount of speedup.

" Replicated trials execute independent, sequential simulation programs on dif-

ferent processors. This approach has two serious drawbacks: (1) it is only

useful in Monte Carlo simulations [15) and studies testing multiple parameter

settings, and (2) it is not scalable because the memory requirements increase in

proportion with the number of parallel trials. In partitioned memory parallel

processors, sufficient memory must be available in each processor to hold the

entire simulation program.

" Parallel time-driven simulations execute events occuring at the same time step

in parallel. This technique is very effective when the time step can be made suf-

ficiently large that many events can be processed in parallel without sacrificing

fidelity. Special purpose logic simulation engines have been very successful in

exploiting this technique [28,11,23]. However, time-stepped simulation quickly

degenerates to serial execution in asynchronous problem domains.

" Parallel event-driven simulations execute events in different processes in par-

allel. These events need not have the same event times. Two approaches,

conservative and optimistic, have been adopted in these algorithms. Conser-

vative approaches [22] can achieve speedup in certain situations [12]. However.

existing approaches are limited to simulations with static processes and in-

terconnection patterns. Further, empirical studies of deadlock avoidance and

deadlock detection and recovery algorithms indicate that performance is poor

in many simulations of practical interest [12,25].

Optimistic parallel simulation algorithms such as Time Warp avoid many of

the problems associated with conservative methods. Processes may advance

relatively independently of one another, enhancing parallel execution [19].

Dynamic task creation and communication patterns are allowed. The central

disadvantages of Time Warp are: (1) rollbacks may be frequent, and (2) the

overheads associated with Time Warp, particularly for state saving, are sub-

stantial for simulations containing large amounts of state. This is problematic

because simulation programs are notorious "memory hogs."

The thesis will focus only on parallel discrete event simulation. In the rest of

this chapter, current parallel discrete event simulation algorithms are introduced.

the advantages and disadvantages of each algorithm are discussed, and existing

approaches to hardware support for simulation are investigated. Finally, a sim-

ulation engine is proposed for efficiently implementing the optimistic Time Warp

mechanism.

1.3 Parallel Discrete Event Simulation

Recently, parallel simulation has become realizable by the emergence of powerful.

highly parallel computers at relatively modest costs. In parallel simulation, each

physical process of the system being simulated is modeled by a logical process in

the simulator. Logical processes may be executed concurrently. The interactions

between physical processes are simulated by messages passed between logical pro-

cesses. Each message contains a timestamp indicating the point in simulated time

at which the corresponding physical interaction occurs. Timestamped messages are

identical to the events discussed earlier.

6

Unlike traditional sequential discrete event simulation programs, in which only

a single global clock is used, each logical process in the parallel simulation has its

own clock. Synchronization among these local clocks is a difficult problem. Several

alternatives have been proposed, of which the Time Warp mechanism appears

to be the most attractive. Time Warp offers the potential for more widespread

exploitation of parallelism and relaxes many assumptions required by conservative

approaches. Below, the clock synchronization problem is discussed in more detail

and the existing solutions are surveyed.

1.3.1 The Clock Synchronization Problem

A critical problem that must be resolved by the distributed simulation mech-

anism is the management of simulated time. The simulator must ensure that

it accurately models causality in the system being simulated. It is sufficient to

guarantee that each process always processes incoming messages in non-decreasing

timestamp order. This is a difficult task because, in general, each process is

uncertain as to what messages will be sent to it in the future. In "conservative"

simulation approaches, each process is forced to wait until it can determine with

absolute certainty the next message that should be processed. This waiting, called

artificial blocking, differs from the usual notion of blocking in parallel programs

which results from waiting for data dependencies in the computation to be satisfied.

All of the processes in the simulation program may become blocked (artificially or

otherwise), causing the simulation program to become deadlocked. Deadlock is an

important problem that must be addressed by conservative simulation strategies.

Mechanisms to address this problem include deadlock avoidance and detection and

recovery techniques.

7

1.3.2 Solutions to the Deadlock Problem

In conservative strategies, several assumptions concerning the parallel computer

and the behavior of logical processes are required:

* Messages from one process to another arrive at the destination in the order in

which they were sent.

* Messages are transmitted through the network without error, and no messages

are lost.

" The sequence of timestamps on messages sent from one process to another

forms a non-decreasing sequence of values.

" No logical processes are created dynamically.

" Communications among logical processes are statically defined.

Later, it shall be seen that these restrictions can be relaxed when using the Time

Warp mechanism.

1.3.2.1 Deadlock avoidance: Chandy and Misra [5] developed a deadlock

avoidance technique based on sending NULL messages. A NULL message is a

"dummy" message (i.e. it does not correspond to any event in the simulation)

that provides a lower bound on the timestamp of the next message sent from one

process to another. To avoid deadlock, an additional notion called lookahead must

be introduced. A process is said to have a lookahead of L if an incoming message

with timestamp T cannot cause a new outgoing message to be generated that has a

timestamp less than T+L. In general, the lookahead for a process varies dynamically

during the simulation and depends on the type of incoming events.

In Chandy and Misra's algorithm, a process's lookahead is used to derive a lower

bound on the timestamp of the next message sent by that process to its neighboring

8

processes. This mechanism provably avoids deadlock as long as no cycle exists with

a lookahead of zero. Further details of the algorithm are discussed in [5]. Empirical

evidence indicates, however, that this algorithm performs poorly if processes have

poor lookahead ability [12].

1.3.2.2 Deadlock detection and recovery: Another strategy for attacking

the deadlock problem uses a deadlock detection and recovery paradigm (6,9]. The

simulator is allowed to proceed until it deadlocks. The deadlock is detected and

broken, and the simulator is allowed to proceed again. A special process, called the

controller, is used to detect deadlocks and invoke the recovery mechanism. Although

this strategy does not require lookahead to ensure correct operation, empirical data

suggests that like the deadlock avoidance method, it too relies on good lookahead

ability to achieve good performance.

1.3.2.3 Formalisms for parallel simulation: Work by Chandy and Misra

defines an elegant formalism for the distributed simulation problem that is based on

conditional-knowledge [4]. Conditional-knowledge is information that will become

true if some predicate is true, e.g., a submarine will fire a torpedo if it is not first

destroyed by a missile. From this perspective, the attractiveness of Time Warp is

based on its ability to process conditional knowledge; in contrast, conservative

strategies must first convert conditional knowledge to unconditional knowledge

before it can be processed. Simulation algorithms based on conditional knowledge

are expected to enable speedup in certain (but not all) problem domains. Further,

recent work by Aahlad and Browne casts the range of parallel simulation algo-

rithms along a continuum [1]. This work may lead to useful analytic performance

evaluation techniques and new parallel simulation mechanisms.

9

1.3.3 Time Warp

Both approaches (deadlock avoidance or detction and recovery) are conservative

in that processes cautiously advance their clocks only when they can determine

with absolute certainty that violation of causality constraints will not occur. The

central drawbacks in these approaches are the artificial blocking phenomenon and

the restrictions cited earlier.

The Time Warp (TW) [2,18,19] mechanism takes a more "optimistic" point of

view. It allows processes to progress forward as rapidly as they wish, possibly

risking violation of causality constraints. If an error does occur, i.e. messages are

processed in the wrong timestamp order, the computation is undone by rolling back

to a point in simulated time before the error. The simulator then proceeds forward

until the next error occurs.

Time Warp offers the following advantages:

1. The TW mechanism allows greater exploition of parallelism. The artificial

blocking phenomenon is eliminated.

2. The communication pattern between processes may be dynamic, in contrast

to existing conservative simulation algorithms. Further, new logical processes

can also be created dynamically.

Three data structures are employed by Time Warp to enable rollbacks to undo

the computation. Each process must maintain (see figure 1.2):

* an input queue, which holds received messages that either have been processed

or are waiting to be processed.

" an output queue, which list outgoing messages sent by the process.

" a state queue, which records previous states of the logical process that may be

restored on rollback.

10

1.3.3.1 Message processing and anti-messages: The input message queue

stores messages received by the process in timestamp order. A variable holds a

pointer to the current message, i.e., the message now being processed, or the last

message processed if the logical is not being executed, LVT (local virtual time) is

defined to be the timestamp of the current message.

curre t event

Input
queue

State
queue

Output
queue

Figure 1.2. Three queues of a logical process

On each message arrival, the timestamp of the arriving message is compared with

LVT. If it is greater than or equal to LVT, the arriving message is simply enqueued

in the input message queue. Otherwise, the log;cal process must rollback, i.e., undo

the effect of all messages in the input queue that lie between the new message and

the current message.

II

Processing a message typically modifies the state of the logical process, and

causes one or more new messages to be sent. The rollback necessitates restoring the

logical process's state to a previously saved state in the state queue, and sending

anti-messages for rolled back messages stored in the output message queue. An

anti-message is logically identical to an original "positive" message except a flag

indicates it is an anti-message. When a message is sent by a logical process, its

corressponding anti-message is also enqueued in the output message queue.

When an anti-message is received, one of three possible cases will arise:

I. the corresponding positive message is found in the input message queue and

has already been processed.

2. the positive message is found in the input message queue and has not yet been

processed.

3. the positive message is not in the input message queue.

In case (1), the receiving logical process must rollback and annihilate the matching

message, anti-message pair. In case (2), only annihilation is required. In case (3),

the anti-message is enqueued into the input message queue till its corresponding

positive message is received, at which time both are annihilated.

1.3.3.2 Checkpoints and rollback: In order to allow rollback, the state of each

logical process must be periodically saved. Checkpoints are defined for this purpose,

and indicate the time at which a process records its state. States at checkpoints

must be kept in the state queue. Typically, a checkpoint will occur after processing

each event.

1.3.3.3 GVT and fossil collection: The Time Warp uses a mechanism called

fossil collection to reclaim memory resources that are no longer needed.

12

Fossil collection reclaims very "old" entries in the state queue and the in-

pit/output message queues. To perform this function, a bound must be derived on

the "furthest" possible rollback.

This bound, called global virtual time (GVT), is defined to be the minimum

timestamp of any unprocessed message or anti-message residing in system, either

in queues or in transit. Memory used by messages, anti-messages and state queue

entries with timestamp less than GVT can be reclaimed, that is, all except the

state queue entry immediately prior to GVT.

Besides reclaiming memory resource, fossil collection also performs irreversible

operations such as physical output (e.g. messages to output devices). Also, execu-

tion errors are only reported to the user when GVT exceeds the simulated time at

which th- error occurred.

Even though the T\' approach offers great potential and flexibility, it may still

fail to achieve good speedup because:

9 Rollback may occur frequently.

* The state saving overhead necessary to allow rollback can be great.

The first problem, frequency of rollback is beyond the extent of this thesis. The

second. state saving overhead, is required even though rollbacks occur infrequently

and is the subject of this thesis.

State saving is very expensive in many applications. Assume that the data bus

is 32-bits wide and the memory cycle time is 200 nanosecond. Copying only a

modest amount of state, say 10k bytes, requires a minimum of one millisecond,

assuming the memory is utilized 100% and no time is required for instruction

fetches. Existing simulators require less than a millisecond to process each event in

many applications[13], so this represents an overhead of more than 100%. Further.,

many simulations contain objects with over a megabyte of tate, making copying

infeasible.

13

1.3.3.4 Other approaches to state saving (software and hardware):

Several possible state saving strategies have been explored. The most straight

forward is to copy the entire state of the process after simulating each event. This

approach is only practical if the state vector is small. Further, it is inefficient in

memory utilization if only a small portion of the state is modified by each event.

A better approach is to use incremental copying, i.e. only the modified portion

of state is copied. Determination of what portions of state may be modified can be

done either during compilation or during execution (runtime). The former approach

uses data flow analysis to determine state variables that might be modified by an

event, and embeds code into the program that only saves these variables before

processing the event. Unfortunately, not every moditied variable can be determined

at compilation time. For example, if state variable X is an array and X[i] is known

to be modified by an event, the index i cannot be determined until runtime, so the

entire array must be saved.

Alternatively, state variables might be saved at runtime just before they are

modified. This will incur a significant runtime overhead, however. Also, rollback

becomes very expensive, and may require an extensive amount of copying.

Another approach is to use infrequent (relative to state changes) copying, i.e.

save the entire state of the process only after processing many events. The problem

with this approach is that the rollback may have to be longer than is strictly

necessary in order to reach the last saved state. If rollbacks tend to be short (e.g.,

only one or two events), this approach becomes exetremely inefficient. Empirical

data suggests that in many practical applications, rollbacks are in fact usually only

one or two events long [17,13].

Approaches using special purpose hardware have been proposed to alleviate the

inefficiencies associated with software based approaches. Lee, Ghani and Heron

built a recovery cache for the PDP-11 family of machines [20]. A recovery cache is

14

designed to be a special function unit that intercepts bus operations made by the

PDP-11 CPU to its memory modules. When a recovery block has been entered

and a variable is about to be modified (for the first time), the original value of that

variable is copied to a special memory before it is actually updated. On rollback,

the saved data in the recovery cache is restored. Although only incremental copying

is required in [20], additional overhead (. memory read must precede each write) is

introduced. This recovery cache, like that reported in [201, reduces the cost of state

saving overhead at the expense of the rollback operation - extensive copying may be

required on each rollback. While this is reasonable for fault-tolerant computation

where errors are assumed to occur infrequently, it is not appropriate for many Time

Warp programs.

Feridtun, Lee and Shin used hardware recovery blocks in constructing a fault-

tolerant multiprocessor [10,21). Each node of this configuration has multiple state-

save units, controlled by a monitor switch. Each state-save unit can hold a valid

state. On detection of an error, the multiprocessor reconfigures itself, and the

process assigned to the faulty module retreats to one of the previously saved state

in a state-save unit. State saving in [10,21] is performed by excessive copying.

however.

1.4 Summary of the State of the Art

Reviewing the state of the art for speeding up the simulation programs, it is

clear that

1. at present, no viable speedup techniques exist for many important simulation

problems of vital interest. Although the problem of speeding up discrete event

simulation programs has been widely studied, all known parallel algorithms

have serious deficiencies. None show good promise for large asynchronous

simulations that contain objects with a large amount of state (the Achilles heel

15

of Time Warp) and either require dynamic objects/interconnection patterns

or contain unpredictable interdependencies (where conservative strategies fail).

Many important problems, e.g., many large battle simulations with embedded

continuous simulation models, contain precisely these characteristics.

2. Among the available techniques, Time Warp offers the greatest flexibility and

potential for speed up. The reduction of rollback in Time Warp is fundamen-

tally a scheduling problem, and is not addresses here. This thesis addresses the

state saving problem by using sophisticated memory management hardware.

In this thesis, the rollback chip' (RBC) is proposed to attack the state saving

problem. Ideally, the RBC would be used in a special simulation engine, such as

Utah Simulation Engine (USE) described later. However, it can also be added to

existing multiple processors machines (e.g., the Intel iPSC) as a special memory

board that provides hardware assistance for state saving and rollback.

The value of the rollback chip relative to a software based implementation of state

saving and rollback using copying is greatest when (1) the amount of state is large

(e.g.. a megabyte), and/or (2) the application makes checkpoints very frequently

(e.g., every few hundred microseconds). However, as noted earlier, copying may

represent a significant overhead even for modest sized state.

1.5 Simulation Hardware

Several special purpose simulation machines have been constructed. An increase

of 10 to 1000 times in speed can be gained by applying these machines to logic

simulation. Three special purpose simulation machines will be briefly described

next. Unlike the simulation hardware described in this thesis, these machines are

'The name "rollback chip" is actually somewhat of a misnomer because current circuit densities
preclude a single chip implementation. Nevertheless. this terminology is used because a single chip
implementation is expected to be feasible in a few years.

16

based on time-driven mechanisms, and thus are not appropriate for asynchronous

applications.

1.5.1 Existing machines

1.5.1.1 The Yorktown Simulation Engine (YSE) The Yorktown Simulation

Engine is a logic simulation machine developed by IBM [8,11,23,24]. The YSE

can have up to 256 processors, plus an array simulator used for emulating main

memory, cache, or register files. The processors communicate with each other

during the simulation over a high speed crossbar network. The machine has a toal

gate capacity of 2 million gates and can evaluate approximately 3 billion gates per

second. However, the YSE supports only unit delay simulation.

1.5.1.2 The Hardware Logic Simulator (HAL) The Hardware Logic sim-

ulator was designed by Nippon Electric Corporation (NEC) [11,27]. The HAL is

similar to the YSE configuration in that it only supports unit delay simulation. It

uses a global clock and multiple processors. It also has fewer processors (29 plus

2 special processors for memory simulation). Unlike YSE, HAL only recomputes

the outputs of those gates that have input signal changes during the current time

step. The total capacity of HAL is nearly 300,000 gates, and its speed is about 1 .2

billion gate evaluation per second.

1.5.1.3 The Zycad Logic Evaluator The Zycad Corporation's Logic Evaluator

[28,11] has a maximum of 16 processors which communicate with each other via a

single high speed bus. Communication to the host computer is via a slower bus.

The system can model three logical levels and three logical strengths. Thus, both

gate level and switch level simulations can be performed. It has a gate capacity of

1 million gates, and a speed of 15 million events per second.

17

1.5.2 The Utah Simulation Engine (USE)

Unlike existing simulation engines, the Utah Simulation Engine is intended to

enable solution of large-scale asynchronous simulation programs.

CPU RBC Com 0other
,K nodes

ASIC Memo.

ASIC Memo

Figure 1.3. One node of Utah Simulation Engine

The USE is based on the Time Warp mechanism. It is an MIMD parallel

computer. Each node of this message-based multicomputer architecture consists

of a general purpose CPU, a communication processor, several memory modules,

one or more application specific integrated circuits (ASIC) and the rollback chip

(see figure 1.3.). Intended as a backend processor, this USE is programmed using

familiar object-oriented or process-oriented simulation methodologies.

18

1.6 Organization of the Thesis

This thesis will describe the rollback chip in detail, including:

" Cha-*er 2 presents the functional description of the rollback chip.

" Chapter 3 describes the mechanisms used by the RBC to efficiently implement

the functions defined in Chapter 2.

* Chapter 4 describes one design of the RBC.

* Chapter 5 discusses results of extensive performance evaluation studies of the

RBC.

" Chaper 6 summarizes the results of this thesis.

CHAPTER 2

THE ROLLBACK CHIP

2.1 Interface to the Rollback Chip

The rollback chip (RBC) implements the state saving and rollback operations for

a single node of a multi-processor computer. It provides each simulation process

with a data segment called version controlled memory, or VCGA. The simulation

process stores all of its state variables in this data segment. Version controlled

memory has identical semantics as ordinary read/write memory, except that the

process may, at any time, "mark" the state of the memory as one that it may

later want to restore via a ROLLBACK operation. A state marked by the process

is known as a version of that state. Typically, the process will issue a MARK

operation after it finishes processing each event (message).

The RBC only acts on memory references to version controlled memory. VCM

is assumed to have a fixed maximum size, and in the discussion that follows.

is assumed to be statically mapped into the processor's address space. Specific

numbers for the various characteristics of VCM are used to make the discussion

more concrete, and to indicate typical values. In particular, each VCM data

segment is assumed to contain up to 4M bytes of storage, and up to 64 VCMs

are allowed in each processing element (PE).

The RBC supports six operations: RESET, memory READ, memory WRITE.,

MARK., ROLLBACK and ADVANCE. These six operations, along with their ar-

guments. are generated by the node processor, and are passed to the RBC for

20

execution. RESET, MARK, ROLLBACK and ADVANCE are generated by writing

into the RBC's control registers (which in turn may be mapped into the processor's

address space), and READ and WRITE are CPU accesses to variables that have

been mapped by the compiler into VCM. Each operation is described below:

RESET. Initialize the rollback chip prior to the execution of a Time Warp pro-

gram.

MARK. Mark the current state of version controlled memory.

WRITE(A,D). Write data D into memory address A.

READ(A):D. Read the most recently written version of data associated with

address A (excluding rolled back write operations) and return this data D to

the CPU.

ROLLBACK(k). Restore the version controlled memory to the k-th previously

marked state (k>0).

ADVANCE(k). The k oldest marked states are no longer required, and can be

fossil collected. During fossil collection, resources that are no longer needed

are reclaimed, and irrevocable operations, such as I/O are performed.

2.2 The Memory Address Space

The RBC partitions the address space seen by the CPU into two types of mem-

ory: VCM and non-VCM (see figure 2.1). The RBC only manipulates references

to variables stored in the VCM area. The VCM area is further divided into several

contiguous data segments. As mentioned earlier, each VCM data segment is 4.T%1

bytes in length, and a data segment is assigned to each process which is executed

on the CPU. Addresses generated by the CPU implicitly indicate whether it refers

21

VCM data

Virtual address space non-VCM segment
~Linen

(32 bits) Line,/1VCMo

VCM-tag 00..0 00...00
6 22 VCM2

VCM-tag 11..1 11...11

6 22

non-VCNI

Figure 2.1. Virtual memory space seen by the RBC

to VCM or not, and if it does refer to a VCM, the RBC is activated to process the

memory request to which data segment.

An address format that contains 32 bits is assumed in the following discussion,

as shown in figure 2.2. As the address format shows, the RBC can support 64

processes (6 bits), 256K lines (18 bits) per process, and 16 bytes (4 bits) per line.

The VCM..tag field is used to distinguish the VCM references from the non-VCM

ones.

22

VCM tag PID Line Byte

4 6 18 4

* VCM tag: flag to indicate references to VCM
* PID: process identification number
* Line: line number
* Byte: byte in line

Figure 2.2. Address format used by the RBC

2.3 RBC Data Structures

2.3.1 Mark Frames

The rollback chip must maintain different versions of each state variable to enable

a previous version to be restored. Each version of a state variable is stored in a

separate area of (virtual) memory called the mark frame. Each mark frame has

the same size as a version controlled memory data segment, and is divided into

some number of fixed length lines. An RBC line is similar to a line in a cache

memory system; it is transparent to the processor and serves as the quantum of

data accessed on each memory reference. Here, lines are assumed to be 16 bytes in

length.

Mark frames are organized as a circular list (see figure 2.3). New frames are

added to the top of the stack, while outdated frames can be discarded from the

bottom of the stack. The circular list implementation simplifies storage reclamation

and reuse. Overflows of the circular list will be discussed later, but will be ignored

for now. The CMF (current mark frame) refers to the top frame of the stack.

Similarly. the OMF (oldest mark frame) refers to the bottom frame of the stack.

23

frame f

OMF lineI

VCM
data

segment

C
C IF

Written Bits Array, WB

Mark Frame Stack

AFRAME

Figure 2.3. Data structures used by the RBC

The RBC contains the OMF and CMF registers which contain pointers to these to

frames respectively.

In the discussion that follows, all arithmetic is assumed to be modulo the size

of the mark frame stack. Explicit modulo operators have been deleted to simplify

the presentation, but are included in the rollback chip simulator that is included

as an appendix. Finally, the discussion that follows pertains to a single VCM.

Extensions to handle multiple VCMs per processor are straightforward, and be will

be discussed later.

The six operations defined earlier in this chapter can be easily explained in

terms of this stack-based implementation. The RESET operation resets the CMF

and OMF registers to 0. The MARK operation pushes a new frame onto the

24

stack by incrementing the CMF register. No data is copied on MARK operations.

Memory WRITE operations write the data into the current mark frame, while

READ operations must scan through the stack starting from CMF to find the most

recent version of the variable. Actually, as will be discussed in detail later, the

RBC caches recently used most recent version (MRV) data to reduce the amount

of searching that is required in practice. Finally, ROLLBACK(k) pops k frames

from the stack by decrementing the CMF register by k, and ADVANCE(k) removes

the k oldest frames by advancing the OMF register.

Two additional aspects of the RBC must be discussed. First, since not every vari-

able in the frame is written between successive MARK operations, mark frames will

usually contains "holes" where no valid data exists. A flag is required to indicated

which lines contain valid data, and which lines do not. Secondly, the ADVANCE

operation may accidentally discarded needed data, so additional precautions must

be taken. These two aspects are described next.

2.3.2 Written Bits

A single bit called a written bit is associated with each line of each frame in

the stack. The written bit is used as a flag to indicate whether or not the line

contains valid data. It is set (i.e. 1) when the line contains valid data. To improve

the efficiency of searches for the most recent version of a line, the written bits are

organized as a two dimensional array. Each array entry WB[,.1 holds the written

bit corresponding to line I of mark frame f(see figure 2.3). The search for the most

recent version of line I is accomplished by searching row I of the written bit array

starting at WB[l, CMrF" until a set bit is found (see figure 2.4).

2.3.3 The Seldom Written Data Problem

As mentioned earlier, simply incrementing the OMF register on each ADVANCE

operation may cause needed data to be discarded. To see this, consider the following

25

Search-MRV (line ln)
for i:- CHF to OMI by -1 do

if (UB[in, i) - 1) Return(i);
end-for;
Return (ERROR); /* all zero written bit is error state */

end Search-RV;

Figure 2.4. Program to locate the most recent version of line. In practice, a block
of (say) 16 written bits are read in parallel and scanned using a priority encoder.

situation: a variable is written infrequently, so its most recent version of data

becomes buried far into the mark frame stack. If the O.MF register advances beyond

the frame containing this data and discards that frame, this data will be erroneously

discarded. and the most recent version of that variable is lost. This is illustrated

by the example in figure 2.5.

To avoid this problem, a special mark frame called the archirf fram is intro-

duced. The most recent version of line I that is older than OMF is copitd to the

archive frame before the frame is discarded by the ADVANCE operation. If a

READ operation fai' ,o find a set written bit, it assumes the most recent version

of the variable is stored in the archive frame.

2.4 RBC Operations

The algorithm implemented by the RBC is shown in figure 2.6 using a Pascal-like

syntax. MRV denotes the frame number holding the most recent version of the line

in question. and may refer to the archive frame. The description is straightforward.

One point worth noting is that the WRITE operation must first copy the MRV line

into the CMF if the CMF written bit is not set. This is required because WRITE

operations do not overwrite the entire line.

26

I j I I i I L I
OMF CMF

(a) A value is written in CMF.

I 1121I I I
OMF CMF

(b) After several mark operations, the value is deeply
embedded in the stack.

t

OMF CMF
(c) Advance operations erase needed data for the

seldom written variable.

Figure 2.5. Example: seldom written data lost on ADVANCE operation

Some operations may initially seem to be very slow, and/or inefficient. Special

mechanisms have been developed to efficiently implement the RBC algorithm shown

in figure 2.6. These mechanisms are described in next chapter.

27

I* NLines is the number of lines in VCM, and NFrames is
the number of frames in the mark frame stack.

/* Line is a data type corresponding to a line of data. */
/* Memory references are word-based, so a Read request to
/* address A (denoted as ln.A) will return a word of data*/

from its MRV frame (denoted as Stack[ln][MRV).Word). */

Boolean WBENLines] NFramesa;
Line Stack[NLines] [NFrames];

Reset) ::
CMF :z 0; OMF :- 0;
for each line in of each frame fr do

WBEln]Efr) :- 0;
end-for;

end Reset;

Write (address ln.A, data D)
if (WB[ln3[CMF] - 0) /* first write to the line of CMF frame */

Stack[ln] [CMF) := Stack[In] [MRV];
Stack[ln][CMF].Word := D;
WB[lnJ[CMFJ := 1;

end Write;

Read (address ln.A)
Return (Stack[in] [MRV] .Word);

end Read;

Mark) ::
CMF := CMF+I;

end Mark;

Rollback (k frames)
for each line in do

for each frame fr := CMF-k to CMF 1 do
WB[ln][fr] := 0;

end-for;
end-for;
CMF := CMF-k;

end Rollback;

Advance (k frames)
for each line In do

/, OMRV is the MRV frame older than OMF+k */
if (OMRV frame exists)

AFrame[lnl := Stack[in] [OMRV];
endfor
OMF :- OMF+k;

end Advance;

Figure 2.6. A cache-based rollback chip operations

CHAPTER 3

MECHANISMS FOR EFFICIENT IMPLEMENTATION

Implementation is a challenging problem because several aspects of the algorithm

in figure 2.6 will be unacceptable inefficient, slow and/or inflexible if implemented in

the obvious way. Potential difficulties with the algorithm described in the previous

chapter (and proposed solutions) are:

Overflow of the mark frame stack. The number of versions of each variable

that may be required during a simulation is unbounded. Further, it is more

efficient for the RBC to manipulate a "block" of versions at one time (particu-

larly when searching through the written bits) rather than individual versions.

To address these issues, working areas are introduced to partition the mark

frame stack. These working areas, as well as the entire mark frame stack. are

organized as a circular list.

Slow access to MRV data. Accesses to MMT data reqaire a search through the

written bit matrix. To address this problem, the most recent version of

recently used lines are cached in the rollback chip, allowing READ and WRITE

"hits" to be performed at conventional cache memory speeds. An additional

optimization is introduced to reduce the search time required for a cache

"miss".

Slow ROLLBACK operation. Many written bits must be reset on each roll-

back. An efficient mechanism called rollback histories has been used to avoid

29

updating the written bits that do not reside in the cache when a rollback

occurs; the bits are instead cleared when they are reloaded into the cache.

Slow ADVANCE operation. Extensive copying may be required for the AD-

VANCE operation to move data into the archive frame. To address this prob-

lem, the rollback chip processes ADVANCE operations in parallel with other

RBC activities. The processor need not wait for tle ADVANCE operation to

complete unless it runs out of memory. Also, an optimization is introduced to

reduce the amount of data that must be copied to the archive frame.

Poor memory utilization. If few state variables are modified between MARK

operations, most of the memory in the mark frame stack is wasted. A dynamic

memory allocation scheme based on demand paging is used to allocate physical

memory only when it is needed.

Slow context switches. Mechanisms similar to those used in translation looka-

side buffers in memory management units (MMU) avoid excessive overheads

if there are many simulation processes mapped to a singie processor.

The current RBC design has mechanisms to address these issues. Before dis-

cussing these aspects in detail, earlier RBC designs are briefly presented.

3.1 Earlier RBC Designs

During the development of the rollback chip, several different designs have been

developed and evaluated. The final design is based on a special type of data cache.

and offers significant advantages over previous ones. Nevertheless, these earlier

designs will be described next in order to document alternative approaches that

were considered.

30

Originally, the RBC was envisioned as a single chip containing the entire written

bit array. The second design of the RBC is analogous to an MMU (memory manage-

ment unit). In this latter version, the written bits were stored in conventional RAM

and only recently referenced bits were cached in a TLB (table lookaside buffer). Like

the initial design, the RBC simply translated virtual address (addresses in VCM)

generated by the CPU to physical address (addresses in the mark frame stack).

This translation essentially involved concatenating a frame number to the address

generated by the CPU. The values of state variables are then directly read (written)

from (to) memory. In the current design, the RBC functions as a data cache, i.e.,

in addition to WB information, the most recent version of each recently used state

variable is also cached in high speed memory.

3.1.1 A WB-based Rollback Chip

The focus of this initial design was on avoiding excessive copying for state saving.

and rapid searches for the most recent version of the referenced variables. Therefore,

the entire written bit array was maintained in the RBC.

A prototype is described in [14]. A 16X16 WB array is used to perform the

state-saving for a single process with VCM size of 16 lines (and at most 16 mark

frames are allowed at any time).

Because most Time Warp programs need larger VCMs and more than 16 versions

of state, extensions were developed to handle programs with a larger VCM size and

more versions than that which could be fitted on the chip (see [14]).

The central disadvantage of this design is that it does not support multiple

processes per processor, and the proposed extensions increase the complexity of the

hardware considerably.

31

3.1.2 An MMU-based Rollback Chip

Because of the deficiencies in the first design, a refined design was proposed.

A TLB was used to cache the address translation information necessary to map

references to VCM to the appropriate mark frame. The superiority of this refined

design is that it can easily accommodate programs with larger state spaces, and

multiple processes per processor.

The written bits are still used to indicate valid data. However, only individual

rows of bits are stored with other address translation information in the entries of

the TLB. The details of this design can be found in an appendix.

Memory READ and WRITE operations in this design always access main mem-

ory. The central drawback of this approach is that all memory accesses to VCNI

are slowed because they must first pass through the RBC.

The current design uses a data cache to address the memory latency problem.

The remainder of this thesis will deal exclusively with this cache-based design.

3.2 Working Areas and Dynamic Growth of the
Mark Frame Stack

The mark frames in the stack are partitioned into fixed sized working areas

(WA). A working area contains (say) 16 contiguous mark frames. For example, the

first working area consists of mark frame 0 through 15, the second 16 through 31,

etc. Here, we assume the RBC supports 16 working areas or up to 256 versions

of the process state. The working area number can be obtained by extracting the

high order bits of the frame number; the lower order bits provide an offset within

the working area. Assuming the frame number is 8 bits, the upper nibble indicates

the working area, and the lower nibble the frame within the working area. The

oldest working area (OWVA) is defined to be the working area containing the OMF.

32

Similarly, the current working area (CWA) is defined as the working area containing

the CMF.

Using working areas, it is possible to devise a scheme to allow the mark frame

stack to dynamically expand beyond the fixed size allocated to the circular buffer.

A set of working area registers can be defined in the rollback chip, each of which

points to a single working area of the mark frame stack. Like the mark frame

stack, the working area registers are organized as a circular queue. When the stack

overflows, registers corresponding to working areas at the bottom of the stack are

saved in memory, allowing these registers to be used to accommodate the expanding

stack. These saved registers would be eventually garbage collected by ADVANCE

operations. Alternatively, a very long rollback might cause this saved information

to be reloaded back into the working area registers.

Though feasible, supporting dynamically expanding stacks adds a nontrivial

amount of complexity to the rollback chip design. Also, context switches become

more expensive, necessitating saving and restoring the contents of the working area

registers when execution switches to another process, or the use of multiple banks

of registers. Further, even if dynamic stacks are not supported, overflow of the

mark frame stack can be easily handled by blocking the offending process until

global virtual time advances sufficiently to allow old frames to be garbage collected

and reused. It is unlikely that such blocking will diminish performance because

processes running out of stack space are far ahead of others, so they are not likely

to be on the critical path of the computation. In the discussion that follows, it

assumes that the rollback chip does not use working area registers and supports a

fixed sized mark frame stack.

33

3.3 The RB Cache

The READ operation must return the most recent version of the referenced data.

Searching through the written bit array to locate the MRV frame on each READ

operation is too expensive. A cache is used to address this problem.

Two approaches, one using a write-through policy and the other a copy-back

approach were considered and compared. In the write-through approach, memory

writes are forwarded to main memory immediately; the copy-back policy employs

extra bits call dirty bits to record the change only in the cache, and updates the

memory afterwards. The copy-back approach has the advantage that it generates

less memory traffic. However, the write-through cache has a simpler circuit design.

Although this latter point is true of conventional caches, the increase of complexity

using copy-back is even greater in the RBC for reasons that will become clear later.

3.3.1 Design I: The Write-through Cache

Valid PID Line MRV Data

Figure 3.1. The fields in a write-through cache entry

The fields in each RB cache entry using a write-through policy are (see figure 3.1):

Valid: A single bit to indicate if the entry holds valid information.

34

PID: The ID of the process to which the line belongs. Each process is assumed to

have a single VCM, so this field is actually the number of the corresponding

VCM data segment.

Line: A field to indicate the line number cached in this entry. Associative searches

are performed on this and the PID field.

Data: A field holding the most recent version data for the line.

MRV: The number of the frame that contains the most recent version of the line.

This field is used in write and rollback operations.

The six operations defined earlier affect the cache as described below:

RESET: The Valid field of each entry of the RB cache is reset to 0, indicating

that no valid information is held.

READ: The RB cache operation is similar to that of a conventional cache

for READ operations. If a hit occurs, i.e., a valid entry is found in which the

line number and PID fields match that of the referenced address, the requested

data is extracted from the Data field, and returned to the requesting process (see

figure 3.2). This is identical to the operation of a conventional cache, so an access

time equivalent to that in conventional cache memories can be expected. If a miss

occurs, the least recently used line or an invalid entry (if there is one), is selected

and overwritten. The frame containing the MRV of the line must be determined by

searching the corresponding written bit array. The information for the referenced

line is loaded into the cache, and the requested data is returned to the CPU. An

optimization will be described later to reduce the MRV search time for RB cache

misses.

WRITE: On write hits, the data are written into the cache as is done in con-

ventional caches, and the CMF register is written into the MRV field. Because a

35

Read.Hit (cache entry e)
Return (cache[el .Data);

end Read-hit;

Read-Miss (line ln)
Find the LRU entry (or an invalid entry if there is one) e;
Search the WRV frame for line In;
cache[e).Valid :- TRUE;
cache[e].Line : in;
cache [e) .Data :z Stack[In] [MRV);
cache[e].MRV := MRV;
cache[e].PID :z PID;
Return ([cache el. Data);

end Read-Miss;

Write-Hit (cache entry e, line in, data D)
cache[e).Data := D;
cache[e.MRV := CMF;
Stack[ln][CMFJ := cache[el.Data;
WB[ln][CMF] := 1;

end Write-Hit;

Write-Miss (line in, data D)
Find the LRU entry (or an invalid entry if there is one) e;
Search the MRV frame for line in;
cache[eJ.Valid : TRUE;
cache[e].Line : ln;
cache [e) Data = Stack [in] [MRV;
cache[e].MRV :* CMF;
cache[e].Data : D; /* only modify referenced word */
cache[e].PID : PID;
WB[ln][CMF] 1;
Stack[In][CMF := cacheEeL.Data;

end Write-Miss;

Rollback (destination frame dst)
for each cache entry e do

if (cache[e).PID==PID and cache[e].MRV > dst)
cache[e].Valid := FALSE;

end-if
end-for

end Rollback;

Figure 3.2. Write-through cache operations

36

write-through policy is used, the line is also written immediately to the CMF frame

of memory.

A write miss operation is essentially a read miss immediately followed by a write

hit. The most recent version of the line must be loaded into the cache because write

operations do not modified the entire line. The new data and the CMF register are

then written into the cache, and the line is written into the CMF frame in memory.

Because read and write misses must search through the line's written bits to

find the most recent version of the data, the miss penalty of the RBC could be

significantly greater than that of conventional caches, especially when the most

recent version of data was created long ago. A simple optimization can be used to

speed up the search. Whenever an entry is deleted from the cache, the MRV field

(actually just the working area that contains the MRV frame is necessary) can be

written to memory in a special location associated with that line. An integer vector

called Last WA[]is defined for this purpose; LastWA[i] is associated with line i. The

search for the MRV frame can now begin at either CWA or LastWA, whichever is

smaller (using modulo arithmetic). The LastWA may be greater than CWA because

ROLLBACK operations may invalidate the LastWA information, i.e., LastNWA does

not necessary point to the working area containing the MRV frame. However, one

would expect that LastWVA will reduce the time required for MRV searches in most

situations. One disadvantage of this approach is that an additional memory access

is required on misses to read and write the LastWA information.

ROLLBACK: ROLLBACK operations must invalidate each cache entry whose

MRV field is greater than the CMF (after the rollback). This can be implemented

with a custom circuit with embedded comparison logic so that the cache entries

can be updated in parallel.

37

3.3.2 Design II: The Copy-back Cache

The second design uses a copy-back policy to reduce memory traffic. This design

also stores WBs in the cache to maximize the hit rate by reducing the number of

invalidated entries on rollback. However, extra control circuits are required to

achieve these features.

In addition to the fields listed in the first design (Valid, Line, Data, MRV and

PID), the following are added:

WB: A vector of 16 written bits which correspond to the working area containing

the MRV frame of the cached line.

DirtyWB: A flag to indicate if the cached written bits are the same as those stored

in memory.

DirtyData: A flag to indicate if the cached data are the same as those stored in

memory.

The rollback chip operations are implemented as follows (see figure 3.3):

READ: READ hits are handled in exactly the same way as the previous design.

However, for READ misses, the written bits vector and/or data of the deleted entry

must be written into memory if the corresponding dirty bit(s) are set. The MR\

of the requested data is then located, and loaded into the deleted cache entry, and

the requested data are returned to the CPU.

WRITE: A write hit is slightly more complicated than that of a write-through

cache because the WB vector must be updated, and both the DirtyWB and Dirty-

Data bits must also be revised. If the CMF and MRV frames are the same, the data

can be written into cache as is done in the write-through cache, and the DirtyData

bit is set. However, if the MRV frame is different from the CMF, the MRV data

must be preserved for future rollbacks; that is, the data must be written to memory

38

Read-.Hit (cache entry e)
Return (cache Ce].Data);

end Read-.Hit;

Read-.Miss (line in)
Find the LRU entry (or an invalid entry if there is one) e;
if (cache~e) .DirtyWD) WEcachete) .Line) Eva) :a cache~e) .WB;
if (cache Ce] .Data)

Stack Ecachoe).LineJ EcacheCe) .MRV] cache Ce] .Data;
Search the MRV frame for line in;
cache~e).Valid :*TRUE;
cache~e).Line :~in;
cache~e).Data :Stack~inENRY);
cache~eJ..NRV :* RI;
cache~e].PID :*PID;
cache~eJ.WB WBCln) Eva];
cache~e].DirtyWB := FALSE;
cache~e].DirtyData := FALSE;
Return (Ecache Ce].Data);

end Read-.Miss;

Write-.Hit (cache entry e, line In, data D)
if (CMF-=MRV) then

cache[e].Data :- D;
else

if (cache[e].DirtyWB) WB[ln)Cwa] : cache[eJ.WB;
if (cache[e].DirtyData) Stack~ln]MRV] :- cache~e].Data;
cache[eJ.Data :D;
cache~e].MRV CMF;
cache~e).DirtyWB :* TRUE;
cacheteJ.DirtyData :- TRUE;
cache [e).WB[CMF] := 1;

end Write-.Hit;

Write-.Miss (line in, data D)
Find the LRU entry (or an invalid entry if there is one) e;
if (cache Ce].DirtyWB) WB~cache Ce] .Line] Eva] :- cache Ce] .WB;
if (cache Ce] Data)

StackEache~e] .Line] Ecache~e) .MRV) cache~e] .Data;
Search the MRV frame for line In;
cache~e).Valid :a TRUE;
cache~e).Line :in;
cache Ce] .Data :Stack~in) EMRV];
cache~e]t4RV :~CMI';
cache~s).Data :D;
cache[e).PID :*PID;
cache~e).DirtyWB := TRUE;
cache~e].DirtyData :- TRUE;
cache [e.WBCCMF] := 1;

end Write-.Miss;

Figure 3.3. Copy-back cache on READ and WRITE operations

39

if the dirty data bit is set. In addition, the WB vector and MRV information must

also be modified to reflect the new MRV frame,i.e., the CMF. If the CMF and

previous MRV belong to the same working area, only the written bit vector is

changed (and, of course, the DirtyWB bit is set). If they do not match, the written

bit vector must be stored into memory (if the DirtyWB is set), and all written bits

must be cleared except CMF, which now holds the most recent version of the data.

These modification to the cache entry can be done in parallel. Finally, the cached

data is modified with new data, and the DirtyWB and DirtyData bits are set.

The case when the CMF is not equal to the MRV frame in a WRITE operation

only happens on the first write to that line after a MARK operation. Subsequent

writes to the line follow the simplest case described above. Further, memory writes

can be queued by the RBC, so the processor need not wait for memory write

operations to complete.

As before, a write miss operation can be viewed as a read miss immediately

followed by a write hit. The most recent version of the line must be loaded into the

cache because write operations do not necessary modified the entire line.

ROLLBACK: Since the copy-back RB cache contains the WB vector, rollbacks

need not invalidate all cache entries whose MRV frame is newer than the destina-

tion of the rollback (i.e. the new CMF). However, clearance of written bits and

comparison are required and in some cases the MRV data must be reloaded back

into the cache.

When a rollback occurs, the RBC first clears the written bits of the rolled back

frames in each cache entry. This operation can be done in parallel using circuitry

embedded in the cache for this purpose. After this is completed, each entry falls

into one of the following cases (see figure 3.4):

1. No written bit is cleared, i.e. there were no set written bits among rolled back

frames. Entries of this type require no further modification.

40

Valid Line MRV WB Data
1 38 36 0011100000000000 2780

1 47 43 100100010010000 591
1 15 39 000001100000000 3094

(a) Three entries before rollback. Other fields are not effected.

Valid Line MRV WB Data
1 38 36 011100000000000 2780
1 47 36 9100100000000000 1200
0 15 39 000000000000000 3094

(b) After rollback to frame 37.

(1) does not change.

(2) MRV is changed, reload new data (set DirtyWB).

(3) entry is invalidated.

Figure 3.4. Invalidation of cache entries on rollback.

2. One or more bits are cleared, but the cached bit vector still has one or more

bits that remain set. These entries remain valid, however, new most recent

version of data must be reloaded into the cache. Entries such as these are

invalidated in the previous design, so a higher hit rate can be expected.

3. One or more bits are cleared, and the entire cached bit vector becomes cleared,

i.e., no set bits remain. Entries of this case are invalidated by resetting the

Valid bit to 0.

ADVANCE: ADVANCE operations do not change the cache, however, dirty en-

tries (entries that have either DirtyWB or DirtyData is set, or both) corresponding

to frames that are about to be fossil collected must be written into memory. This

41

action, called flushing, must be performed before the fossil collection of the working

area begins, the fossil collection process then uses only the information stored in

memory.

3.4 Rollback Histories

The RBC algorithm requires that a rollback operation clear all of the written

bits corresponding to frames that are rolled back, i.e., popped from the stack. A

brute force implementation of this operation will be too expensive for programs

containing large amounts of state. An obvious alternative is to clear all written

bits for new frames that are pushed onto the stack, however, this simply transfers

the problem to the MARK operation, making it too expensive. The rollback history

(RBH) mechanism is designed to efficiently clear the appropriate written bits when

a ROLLBACK occurs.

The key idea used by the rollback history mechanism is that no written bits

stored in memory arc cleared when a rollback occurs; instead, the written bits are

cleared on the fly as they are read from the written bit memory (e.g., following a

cache miss). This dramatically improves the efficiency of the rollback operation. --t

the cost of a small increase in the cache miss penalty.

Using this "lazy" approach, the written bits in memory may not be updated until

long after the rollback occurred. Therefore, the question that must be answered

is "which written bits must be cleared when they are read from the written bit

memory?" The rollback history (RBH) mechanism provides this information.

One can rephrase to above query to ask an equivalent question: "what is the

deepest rollback that has occurred since the written bits were written into mem-

ory?" If the written bits were written to memory at time t (meaning they were

correct and up to date at time t), and the deepest rollback that has occurred since

42

time t was to frame f, then the written bits that are newer than frame f must be

cleared. Therefore, one approach to this problem is to:

1. Define an array of values RBH[t] such that RBH[t] indicates the deepest

rollback that has occurred since time t.

2. Whenever a block of written bits are written to memory (normally, 16 written

bits will be written at one time), store a timestamp ts with the written bits

indicating the current time.

3. Whenever the written bits are read from memory, read the timestamp ts that

is stored with them, and clear all bits corresponding to frames that are newer

than (greater than) RBH[ts].

Although this approach efficiently implements the bit clearing operation, it has

a serious flaw: the size of the RBH array must have an infinite number of entries

because the index t is a continuous quantity. This problem is resolved by observing

that RBH[t] (the deepest rollback since time t) is identical to RBH[t + At] if no

rollbacks occurred between t and t+ At. Therefore, the RBH entries corresponding

to times between two consecutive rollbacks can be represented by a single RBH

entry. This is equivalent to saying that "time," from the perspective of RB histories.,

is measured by the number of rollbacks that have occurred since the computation

began. Each rollback increases RBH time by one unit. The timestamp, described

above, is simply "the number of rollbacks that have occurred since the computation

began." One need only maintain a counter that is incremented each time the process

is rolled back, and use this counter to generate timestamps (called "tag", used as

an index to RBHistory stack entries) when written bits are written to memory. An

example of 1.3ing this lazy approach is shown in figure 3.5.

With the above modification, the lazy approach to clearing written bits can

be implemented very efficiently. The only question that remains is maintaining

43

5
5

12 - 1100011001100000 1 2
infinit WB vector(16 bits)

of a single WA tag

RBHistory MRV = 10

(a) Rather than reset the written bits on rollback,
the WB information of a single WA and its tag are written into memory

5

7 1i0ooo 0ooooooooo 2
7

infinity MRV = 6

(b) When reloading the line, the WB vector is read and reset.

Bits in frames newer than 7 are cleared.

Figure 3.5. Example: lazy approach of clearing the WB by using tag

the RBH array. The RBH array can be viewed as a stack, with a new element

pushed onto the stack whenever a rollback occurs. Stack elements are never popped

from the top of the stack, however, the oldest entries at the bottom of the stack

may be garbage collected. Technically, the RBH mechanism is actually a FIFO

queue, but we shall refer to it as a stack to facilitate the presentation. It is

actually implemented as a circular buffer, so all of the arithmetic described below

is implicitly modulo arithmetic.

RBH[i] indicates the destination frame number of the "deepest" rollback that

has occurred after the ith rollback (i + 1, i + 2, etc.), or equivalently, after the stack

element was created. The top of stack element always contains the value INFINITY

44

RBH-UPDATE(dst)
i :- CRBI;

while (dst < RBH[±))
RBH[i] := dst;
i := i-1;

end-while
end RBH-UPDATE;

Figure 3.6. Update operation for RBH stack for rollback to frame dst.

because no subsequent rollbacks have yet occurred. When a rollback occurs, one

must update the RBH stack - if the destination dst of the current rollback is

deeper than (less than) RBH[i], then dst should be written into RBH[i]. At first

glance. this would imply the entire RBH stack must be examined on each rollback.

Fortunately, this is not the case.

It is easy to see that the condition RBH[i] RBH[i + 1] must always be

true - the deepest rollback since time i must clearly be at least as deep as the

deepest rollback since time i + 1.' Therefore, if rollback history entries are updated

from the most recent to the oldest, we can stop the updating process as soon as

a rollback history entry is encountered with a rollback as deep or deeper than the

destination of the current rollback. If the rollback is relatively short (i.e., if there

is temporal locality), very few rollback history entries will have to updated. The

update procedure for the RBH stack is shown in figure 3.6. An example of the RB

history stack before and after a rollback operation is illustrated in figure 3.7.

The update procedure may be efficiently implemented by buffering the top

portion of the stack in a special custom memory with embedded comparison logic

to update stack entries in parallel whenever a rollback occurs. The remainder of the

IAnother way of seeing this is to observe that the set of rollbacks since i + I are a subset of
those since i.

45

5 Bottom 5 Bottom
5 5

12 12
17 17
17 1732 Rollback to 30 30

34 30
35 30

Infinity Top 30
Infinity Top

(a) Before rollback. (b) After rollback.

(1) new entry pushed.

(2) older entries updated.

Figure 3.7. Updating RBH entries on rollbacks.

stack is stored in conventional RAM. Only long rollbacks will require updates to

the rollback history elements that are stored in RAM, so the entire rollback history

stack can usually be updated very rapidly. After performing extensive simulations

of the rollback chip (described later), we have never observed more than ten entries

of the RBH stack updated on a single rollback - on average, only two to three

entries are updated (one entry, the top of stack, is always updated on each rollback).

Therefore, by buffering only a modest number of RBH entries in the custom chip

(say 16), one would expect that the entire stack can be updated in a single clock

cycle.

Garbage collecting the rollback history (from the bottom of the stack) is straight-

46

forward. A variable called TAGBOUND[wa] is associated with working area wa

that holds the pointer to the top of the rollback history stack (CRBI or current

roll back index) when wa was first created by a MARK operation (i.e., recreation

following subsequent rollbacks is ignored). TAGBOUND[wa] is a lower bound

of any tag (timestamp) written into working area wa. Consider two consecutive

working areas, wa and wa + 1, that are currently in use. Because wa + 1 must have

been created after wa was created, and CRBI is always increasing in value (in the

modulo sense), then TAGBOUND[wa] <TAGBOUND[wa + 1]. It immediately

follows that TAGBOUND[O1'A] is a bound on the smallest tag in use by any

working area. Thus, when working area wa is fossil collected, rollback history

entries up to, but not including TAGBOUND[wa + 1] may be reclaimed.

3.5 Fossil Collection

The ADVANCE operation triggers fossil collection of storage that is no longer

needed. Irrevocable operations, such as I/O, are also performed during fossil

collection. For example, each output device can be implemented as a separate

logical process. When there is output required, a timestamped message is sent to

that process; physical output is generated after GVT exceeds the timestamp on

that message. These mechanisms are independent of RBC operation (which only

manages the state queue), so they will not be discussed further.

It is convenient (and more efficient) to process an entire working area at a

time rather than on a frame-by-frame basis. One could, in fact, garbage collect

several working areas at one time if even greater efficiency is desired, although this

will complicate the mechanism somewhat. Data copying is required on storage

reclamation because of the seldom written data problem mentioned earlier.

There may be much data copying (to the archive frame) required if many data

values have been written into the fossil collected working area. This would degrade

47

performance significantly if the CPU were forced to wait until the data copying

were completed. This problem is avoided by performing the ADVANCE operation

in parallel with other RBC operations.

The ADVANCE operation has only a minor effect on the RB cache if a write-

through policy is used. If the ADVANCE operation fossil collects data that is stored

in some entry of the cache, the MRV field of that cache entry will become out of

date. However, even if this MRV information is left out of date, the cache will still

operate correctly because the MRV information is only used during the invalidation

operation when a rollback occurs; the worst that could happen is a cache entry

might be accidentally invalidated by a rollback. Accidental invalidation might

degrade performance slightly, but does not compromise correctness. If desired,

accidental invalidation could be avoided by resetting the MRV field to a special

state that cannot be invalidated by rollback whenever the MRV frame is fossil

collected.

As mentioned earlier, if a copy-back policy is used, entries with set DirtyWB

and/or DirtyData bits must be flushed to the memory before the fossil collection

because the latter uses only information stored in memory to reduce the cache

contention.

Because the ADVANCE operation proceeds in parallel with other RBC op-

erations, some care must be taken to avoid race conditions. In particular, the

ADVANCE operation copies lines from working areas into the archive frame con-

currently with memory operations that may also access the archive frame. Race

conditions can be avoided by simply delaying the increment of the OMF register

until all data copying is completed. This avoids races because: if the most recent

version of the line is in the archive frame, there are no set written in the working

area that is being garbage collected, so the ADVANCE operation performs no data

copying and no race condition can occur. On the other hand, if the most recent

48

version is not in the archive frame, READ and WRITE operations will never access

the archive because they only reference the most recent version of data. Again, the

correct MRV information will be accessed, so no race condition is possible.

Finally, a simple optimization can be used to reduce the amount of data copied

to the archive frame. If there is at least one set written bit in a frame that is newer

than the working area being garbage collected but still at least as old as the value

of the OMF after the ADVANCE is complete, then the data need not be copied to

the archive frame. This requires the ADVANCE operation to read some additional

written bits to determine if it need not copy the data, however this is less expensive

than copying the line.

3.6 Dynamic Memory Allocation

Allocating memory to every line of every frame of the mark frame stack will

require a substantial amount of memory. For example, if a process has 4M bytes

of VCM, and the stack contains 256 frames, IG bytes of memory are required for

each process. If only a small number of state variables are changed between MARK

operations., most of the memory space remains unused and is wasted.

Dynamic memory allocation using demand paging techniques are used to address

this problem. Here, the "virtual" address is a pointer into the mark frame stack,

(obtained by concatenating the address generated by the CPU with a frame num-

ber) and the physical address refers to main memory. A page table is associated

with each VCM. Each page table entry contains a presence bit that is set if physical

memory has been allocated for the page, and reset otherwise. If the presence bit

is set, the page table entry also contains a pointer to the page. A new page is

allocated on the first write into that page. Unused pages are maintained in a free

list.

49

Because of the large size of the VCM, the page table associated with each working

area may require too many entries. Techniques using multiple levels of page table

can be used to reduce the memory required for page tables.

3.7 Multiple Processes per Processor

The expense of context switches between processes is reduced by the PID field

included in the RB cache. The associative searches are performed on the PID field as

well as the line number field. This allows the cache to hold data from different pro-

cesses simultaneously. Similar techniques are used in translation i3okaside buffers

in conventional MMUs. "Synonym" problem [26] associated with traditional virtual

memory caches will not arise in the RBC because Time Warp algorithms exclude

shared memory between simulation processes. Finally, other process specific state

(e.g. CMF/OMF, the rollback history stack and TAGBOUND) must also be

swapped on context switches, or techniques using multiple register banks must

be used.

CHAPTER 4

PERFORMANCE

The overhead incurred by the rollback chip has been evaluated through extensive

simulation studies of the RBC mechanisms. In particular, much of the evaluation

has been focused on the performance of the RB cache. The MARK and ROLL-

BACK operations can be performed in constant time (only a few clock cycles are

required), as will be discussed later.

Rather than compare the RBC to a hopelessly inefficient software mechanism,

we compare it to a comparable conventional cache memory with no state saving

overhead. This will enable quantitative measurement of the cost incurred by the

RBC to implement state saving.

4.1 The Simulation Model

A simulator has been developed for the rollback chip. Partial validation of the

simulator was obtained by comparing its operation to an independently developed

simulator that implements a simple, brute force version of the RBC algorithm using

copying. The two simulators were exercised and compared over several million

operations, and found to yield identical results (i.e., corresponding read operation

returned the same value).

The 1RBC operation requests from the CPU are generated stochastically from

a multinomial distribution - a fixed probability is assigned to each of the five

operations (RESET is only generated once at the beginning of the simulation).

These requests form the workload presented to the RBC. Traces from an existing

51

Time Warp system were not readily available. However, even if such traces could

be obtained, they would not provide a true characterization of the expected RBC

workload because the frequency and distance of rollback operations are timing

dependent, and would not reflect operation using the RBC. On the other hand,

using a stochastic workload generator allows generation of a wide range of workloads

in an easily controlled fashion.

Addresses for READ and WRITE operations are generated stochastically from a

normally distributed random variable. The locality of the address trace is controlled

by adjusting the variance of this distribution, but remains fixed in any single simula-

tion experiment. Also, the mean of the normal distribution is periodically changed

(within a single simulation run) to model phase changes in the computation.

As described earlier, the operation of the RBC is such that READ and WRITE

operations that "hit" can be expected to require the same amount of time as a hit

in a conventional cache. Although a write hit in the RBC may generate additional

memory traffic (e.g. to update the written bit array), the CPU need not wait for

these memory accesses to complete. Further, because instruction references and

many data references do not access version controlled memory, the RBC is usually

afforded some time to complete these memory accesses before a new RBC operation

is initiated.

Therefore, two important questions to be asked are (1) can the RBC achieve

hit rates comparable to conventional caches, (2) is the miss penalty in the RBC

significantly larger? A lower hit rate would be expected in the RBC because

ROLLBACK operations usually invalidate some cache entries. The miss penalty is

larger because written bits must be searched to locate the MRV frame. To allow

fair comparisons of hit rate, a "comparable" conventional cache is defined as one

that is identical to the RBC but ignores all RBC operations except READs and

WRITEs.

52

Parameters that are used to control the simulator can be characterized into two

categories: (1) workload parameters, and (2) cache design parameters. The former

includes:

" the size of version controlled memory. This was fixed at 4096 lines.

* the locality of the address trace. The locality was fixed in each experiment;

four different degrees of locality were examined.

" the number of reads and writes between MARK operations (the computation

granularity). This was fixed at 20 to correspond to small grained events, and

200 to model large grained events,

" the frequency of WRITE operations relative to READs. This was fixed at 2

or 4 READs per WRITE in each experiment.

" the number of MARK operations between ROLLBACK operations (this affects

the relative event rate, defined later). This was fixed at 2, 8, or 16 in each

experiment.

* the frequency of rollbacks and distance of rollbacks. Within each relative event

rate, the rollback distance was fixed at 2, or 8 in each experiment.

* the frequency at which the mean of the address distribution changes. This was

fixed at 3, 7.5, or 15 in each experiment.

" the average number of mark frames in use. This was fixed at 30 frames, unless

indicated otherwise.

The cache design parameters include:

* the size of the cache, this was set at 256 cache entries.

9 the cache organization (direct mapped, set associative. or fully associative),

53

9 the cache design (design 1 using write-through vs. design 2 using copy-back).

* the size of the mark frame stack. This was fixed at 256 frames.

* the use of the LastWA optimization for cache misses.

4.2 Simulation Methodology

Exhaustive simulations using all possible combinations of the above parameters

is impractical. The following approach was taken to evaluate the effect of each of

these parameters on performance:

1. select a "base" set of cache parameters for the cache design and a set of

"typical" workloads,

2. run the simulator across a wide range of workloads with the base cache design

parameters to evaluate the performance of this particular design, and

3. run the simulator across different cache design parameters, using the typical

parameter settings of the workload to evaluate the effect of alternative designs.

The base selection for simulating the RB cache is two-way associative, write-

through, and size of 256 entries. Typical setting for workload parameters includes

7.5 for locality changes, and 4 for READ/WRITE ratio; other workload parameters

(i.e., address locality, relative event rate, and rollback distance) are as described

earlier.

4.3 Relative Event Rate

Rollbacks reduce the RB cache hit rate by invalidating entries. The more fre-

quently rollback occurs, the more often entries are invalidated. Similarly, the longer

the rollback, the more entries invalidated by each rollback. However, simulation

54

programs can never have rollback operation that are both frequent (relative to the

frequency of MARK operation) and long. Let FMK and FRB denote the frequencies

of MARK and ROLLBACK operations respectively, and RBdjt be the average

rollback distance. The quantity FMK/(FRB * RBdit) indicates the net rate at

which events are being processed. Referred to as the relative event rate, this

quantity must be greater than one or else the computation is going backward!

This is provably impossible in Time Warp. An application program based on Time

Warp with larger event rates normally results in a better hit rate. As the event

rate approaches infinity, rollbacks are less frequent and/or shorter, and the hit rate

will approach that of a conventional cache. On the other hand, programs with

poor event rate (e.g. nine steps backward per ten steps forward) can be expected

to suffer increased hit rate degradations relative to the conventional cache because

rollbacks max' invalidate cache entries.

4.4 Hit Rate

The hit rate of the RB cache is defined as the ratio between the number of the

references to version controlled memory variables which are found in the RB cache

and the total number of the references to the VCM variables. Here, the important

measurement is not the absolute hit rate (any value can be obtained by varying the

locality of the address trace), but rather the hit rate degradation when compared

to that of a comparable conventional cache (i.e., one with no entries invalidated by

rollback operations).

4.4.1 The Affecting Factors

A series of simulation experiments were performed to evaluate the amount of

hit rate degradation using the RBC under various workloads. A complete table

55

of these results can be found in an Appendix. The effects of different workload

parameters on performance are discussed below:

Locality of address traces: The absolute hit rate of the conventional cache is

controlled by varying the locality of the address trace, which is in turn con-

trolled by the deviation of the normally distributed random variable used to

generate addresses. The smaller the standard deviation, the higher the locality,

and the higher the hit rate. Experiments were conducted in which the hit rate

ranged from 70% to, nearly, 100%. Hit rates in modern conventional caches

are normally 90% or higher, and often greater than 99%.

Degradation in Hit Rate
ego(Percenfr base set of parameters)Degradon(Pret

1.00- 1

* large grained, event rate=10.0, RBdist=2.5
o large grained, event rate=13.4, RBdist--6.0
El large grained, event rate=26.4, RBdist=2.5
x small grained, event rate= 11.4 RBdist=2.2

0.75- V small grained, eventrate=11.6 RBdist=73
* small grained, event fate173 RBdist=2.5

0.50-

0.25-

0.00.
70 80 90 100

Hit Rate in Conventional Cache (Percent)

Figure 4.1. The hit rate degradation with base set of parameters

.-7VT-. -- ~'

56

The hit rate degradation for different absolute hit rates for the base set of

parameters are shown in figure 4.1. The hit rate degradation tends to decrease

as the absolute hit rate increases, especially at very high hit rates. This is

because as locality is improved, fewer cache entries tend to be invalidated

by rollback; for example, if all memory references were to a single memory

address, the rollback invalidation operation would only invalidate at most a

single entry of the RB cache. This effect is less significant for lower hit rates

because the size of the cache then becomes a significant factor; if the cache is

too small, the replacement policy will tend to delete entries before the rollback

has a chance to invalidate them.

Rollback distance and event rate: As discussed earlier, lower event rates and/or

shorter rollback distances tend to increase the degradation in hit rate. Quan-

titatively, the effect of these parameters is shown in figure 4.1. The situations

where the RB cache experiences the most degradation corresponds to those

cases where the event rate is very poor. However, in these situation, the Time

Warp program is thrashing, so performance of the RB cache is a mute point.

Therefore, only the situations corresponding to "reasonable" event rates (e.g..

8 or 16) are of practical interest. In these cases, the degradation is less than

0.5% in most cases. Shorter rollback distances (within a fixed event rate)

tend to increase the degradation (0.1%-0.37b), especially for the large grained

computations because more recently written entries are invalidated.

Frequency of locality changes: A locality change results in a flurry of misses

until the new working set is loaded into the cache. Hit rate degradation for

locality changes every 3, 7.5, and 15 events are shown in figure 4.2.

As can be seen from the results, less frequent changes in locality will cause

greater degradation in the hit rate. For the parameters used in these ex-

57

(PercenDegradation in Hit RateDegradation Prt

1 5 0 - a l ag e g d~ h 4 lo cality dla rig e! p er 3 ev eu s
la m€ Vid. locality chmues per 7.5 evenu
0large grahW4d locality chttle per IS evmux ai gime4d. locality dma per 3 ags

V Wmall Vaiid, locality changes per 7.5 evnits

sml Vawd locality chmpte pa 15 everits

1.0

0.50.

0.00- 170 80 90 100

Hit Rate in Conventional Cache (Percent)

Figure 4.2. The effect of the frequency of locality change on hit rate degradation

periments, hit rate degradation increased by up to 1.5%7. This is because if

the frequency of locality changes is lower, the ROLLBACK operations tent to

invalidate entries that are more likely to be referenced again in the near future.

Granularity of computation: Programs with large grained events, i.e. more ac-

cesses to version controlled memory between MARK operations, are expected

to have higher absolute hit rates because more read and write operations occurs

between rollbacks assuming a fixed event rate and rollback distance. Results

of experiments, for small grained events (20 READs and WRITEs between

MARK operations), and for large grained (200 READs and WRITEs between

MARK operations) are shown in figure 4.3, and 4.4 respectively.

58

Degradation in Hit Rate

Degradaton (acn (sma grained events)

2.50- 0 bv 7216=23, KB*ist=2B.3
o Evn raste=2.3. RBdist=7.7
0 Event rama- 1.4. RBdist=2.2
x Event owl1.6, RBdist=7.3

0V Evagrtw17.', RBdist,2.5
2.00- * Event -25.2. Udist-4.4"

1.50-

1.00-

0.50.

0.00 s m::

70 80 90 100
Hit rate in Conventional Cache (Percent)

Figure 4.3. Hit rate degradation for small grained computation event

In each graph the degradation in hit rate is plotted as a function of the hit

rate in the conventional cache, which in turn is controlled by adjusting the

variance in the probability distribution used to generate the address trace. As

can be seen, the degradation in hit rate using the RB cache varies from less

than 0.01% to as much as 2.41%.

Reference and modification ratio: The invalidation of RB cache entries is based

on the comparison of the rollback destination (new CMF) and MRV cached

in each entry. Thus, entries that are written frequently tend to have more

recent MRVs and are more likely to be invalidated by rollbacks. One would

expect higher degradation as the frequency of the WRITE operations relative

59

Degradation in Hit Rate

D:egradation ((P len e grined events)

2.00- ' Evant rae=2.4, KBdzt=2.O

o Event ra2.4. RBdist=8.0
o Event razc=10.0. RBdist=2.5
x Evet nt=13.4, RBdist=6.0V Event rvi=26.4. BdMit=2.5

1.50- vent ra.eo1.. RdistaS.O

1.00-

0.50-

0.00
70 80 90 100

Hit Rate in Conventional Cache (Percent)

Figure 4.4. Hit rate degradation for large grained computation events

to READs is increased. Results of experiments in which the 66% and 807

of memory accesses are reads are shown in figure 4.5. For large grained com-

putation. the degradation is increased by 0.1c to 0.2% when the percentage

of write operations increased from 20% to 33%. An increase up to 1.5c in

degradation can be expected for small grained computation.

Another series of simulation experiments were conductcd that evaluate the per-

formance of different cache design strategies (a typical workload with locality chang-

ing every 7.5 events, and four READs per WRITE operation is assumed):

Cache organization: Result- of different RB cache designs using direct address.

two-way associative, and fully associative cache organizations are shown in

"" -,, sc. -

60

Delradation In Hit Rate
De~~o i(p ce renefec of R/W ratio)

Degrudazion (Paccg) ~ 1I1
2.00 W VUg d. KUWKJTE

o lug. pain4d READ/WRrTE-m4
E3 Iue paiwd. READ/WRrnFE2
x lUge pand READ/WRiTE-4

1.50.

1.0

0.50.

0.00
70 80 90 100

Hit Rate in Conventional Cache (Percent)

Figure 4.5. The effect of READ/WRITE ratio on hit rate degradation

figure 4.6. When the absolute hit rate is low (e.g. 707c), the degradation

of the fully associative organization was observed to be smaller than that of

the others. However, in those experiments with low event rates (e.g. 2).

the degradation using the fully associative approach increases significantly

as the absolute hit rate increases, and eventually exceeds that of the other

organizations (see the Appendix for numerical values).

The reason for this behavior has to do with the fact that rollbacks always

invalidate cache entries corresponding to the most recent write operations. A

higher degree of associativity implies that a larger number of the most recently

written lines are kept in the cache (assuming an LRU replacement policy is

61

used), so more cache entries will be invalidated by rollback operations when

the absolute hit rate is high. An inspection of the number of the RB entries

that were invalidated in the simulation experiments described above supports

this explaination.

In general, with a lower degree of associativity, more entries corresponding to

non-active sets (those which have not been referenced recently, but have not

yet been deleted from the cache by the replacement policy), are likely to exist

in the cache than in the fully associative organization. If the reexecution of the

computation after the rollback is similar to that of the original, the probability

that these entries will be referenced again by the reexecution phase is higher

than if the rollback had not occurred. Because the caches with lower degree

of associativity are more likely to keep these lines in the cache, they can be

expected to suffer fewer misses immediately following the rollback. This effect

might also be obtained by using a different cache replacement policy.

For those experiments with reasonable event rates (8, 16), the degradation

was observed to be at most 1.747(. Further, the trend in cache design today

is toward large caches with a small degree of associativity (i.e., direct address

caches) to simplify the cache circuitry and thereby reduce cache access time.

In this context, we expect that hit rate degradation using the RB cache will

be very small, much less than linterest.

Write policy: Because a copy-back RB cache contains a WB field to cache more

versions, the degradation of it is smaller than that of a write-through RB

cache1 . However, the improvement in degradation is small when a (much

'The comparison in write policy is done for fully associative caches because the original
simulator developed for the copy-back cache only implements fully associative searches.

62

Derd ation in Hit Rate
a (Pecm)(effct of cahe orgnization)

2.00 -mlI rk d ao d tv
o mafl Sained. two-way maociaive
o small graind. dawc Addrm mappedx lane aiined, fuly associative
V large sind, two-way asociative

1.50- * re p'in4 dui address mqaed

1.00.

0.50.

].~ T/
60 70 80 90 100

Hit Rate in Conventional Cache (Percent)

Figure 4.6. The effect of cache organization on hit rate degradation

more complicated) copy-back RB cache is used. Therefore, the write-through

policy is recommended in the RB cache.

4.5 Miss Penalty

Even if high hit rates can be obtained, overall performance would be disappoint-

ing if the penalty of each miss was very large. Overheads incurred by the RB cache

on a read or write miss that are not incurred in a conventional cache include: (1)

the written bits and the associated RBH tag must be read, (2) the RBH stack must

be read, and the appropriate written bits cleared, and (3) the page table entry

must be read to locate the line data. (.1) may be incurred many times on a single

63

miss if the RB cache must search a long distance to locate the MRV frame, and is

the principal point of concern. (2) is also required on each iteration of the search,

but it incurs a performance penalty on only the first iteration if the hardware is

pipelined. The page table reference (3) is only required once at the end of the

search. By using a translation lookaside buffer and overlapping access to it with

access to the written bit memory, one can eliminate performance degradation for

address translations in most situations.

Two search strategies were proposed in the RB cache design. The original

approach begins the MRV search from the CMF frame. An optimization was

proposed that begins searching from the "last written" working area (LastNVA).

This latter approach necessitates an additional memory reference on each miss to

read the LastWVA information.

4.5.1 The Affecting Factors

Miss penalties for both the optimized and unoptimized search strategies were

compared to evaluate the usefulness of the optimization. The factors that have the

greatest effect on the miss penalty include:

Active frames: An important factor that affects the miss penalty is the number

of the active frames, i.e. all the frames between the CMF and the OMF. This

number is especially important for the unoptimized search strategy, because

it places an upper bound on the length of the required search; for example,

application programs with only one active frame (i.e. CMF=OMF) need only

check the current frame to find the most recent version.

Results of simulations to evaluate the miss penalty are shown in figure 4.7 for

both the optimized and unoptimized strategies. Numerical data is included

in an appendix. The search distance (number of blocks of written bits that

must be read to locate the working area with the MRV frame; recall that 16

64

Mias Penalty for Rollback CacheSeach Dism=

o m.n&l ped. opimizAd, evu nhu.2.5
0D S 11 Ird mpimized. cvui raei 1.57 x smaf Uaiad. odmized. evan moml 1.5
V lap lind. updmizad. ev=rai r2A
+ 1ue Vabiod. opimiznd evan raze-l.A

6+Inuber of"Apdtived Fvnrae Cv-I

Figure ~ ~ 4.7 T e ffec t tenupmbzer. of fraes inue1nmsspnate

4-

3-

0 100 200 300
Number of Acb ve Frames (CMF-OMF)

Figure 4.7. The effect of the number of frames in use on miss penalties

written bits are read on each memory reference) is plotted as a function of

the number of active frames (CMF - OMF). The figures for the optimized

version include the additional memory reference to access LastWA information

so that fair comparison can be made.

Locality of address traces: The address distribution will also affect the search

length because it (the search length) is proportional to the amount of time that

has passed since the data was last written. For example, one would expect that

seldom written data requires a longer search distances than frequently written

data. These results are shown in figure 4.8. For large erained computation.

an average increase of 0.3-0.7 blocks in search lengtl, 1- 1quired to locate the

65

MRV frame as the absolute hit rate decreases from 97% to 74%. For small

grained computations, as the mark frame stack grows, an increase of up to 4.5

blocks was observed.

MiSS Penaty for Rollback cache
SwC&h Diance

3-

2- w

0 small grained. unoptimzed. hit rate--83.63 %
o small grained. OPtimz4d hit rate=83.63 %

1 3 small grined. umoptimtzed. hit rate=95.84 %
x small grained, oprimzed. htit rate=9S.84 %
V large grained, unoptimized. hit rate=-80.78 %
* lurge gained, optimiZed, hit raME=8O.78 %
+ lm~ge grained. unoptimized. hit rate=97.59 %
t large grained, Optimized. hit rate97-59 %o

0.
0 100 200 300

Number of Active Frames (CMF-OMF)

Figure 4.8. The effect of locality of address traces on miss penalties

Reference and modification ratio: Data that is modified frequently will be ex-

pected to have a shorter search distance, especially for the unoptimnized strat-

egy. As shown in figure 4.9, the average increase in search length was observed

to be less than 0.1 blocks in most cases for large grained computations, and

0.1-0.5 blocks for small grained computations when the READ/WRITE ratio

increases from 2 to 4.

66

Miss Penalty for Rollback CacheSearch Diszance
4 M I F. _ - 1; F , F 1 11 , - -_ o

o muMU Sri=d Opti"z W-4D w=nU iWred, W~umft-W-2
x msn VW=4n opdn=4od R/W=2
V laze arm4t mptizd, WW-,4
• l=ne VxW opnid W-V43- + raze Vuv =wdW I/W-2

t e Vgn@ m m4 V-

2-

0.

0 20 40 60 80
Number of Active Frames (CMF-OMF)

Figure 4.9. The effect of READ/WRITE ratio on miss penalties

Rollback distance: The rollback distribution will also impact the search length.

particularly for the optimized strategy - if no rollbacks occurred, then LastNVA

will always point to the working area containing the MRV frame. As seen in

figure 4.10, the average increase in search length is less than 0.1 block in most

cases for large grained computation, and was 0.1-1.3 blocks for small grained

computations.

The simulation results are encouraging in that even for long CMF - OMF

distances, LastWA in the optimized version usually points directly at the working

area containing the MRV information, or close to it. However, for a small number

of active frames, the unoptirnized scheme is somewhat better because the LastVA

67

Miss Penalty for Rollback Cache
Seauih Distanc

8.
o H paned aptimiuad. RBdi=2..S
0 miU panedMOPmnAd. RBdi= .0

7- x -D patined. opdmized, RBdist=7.0
V Rug. prand. uwpdrnized. RBdist=-2i
* 1ge I4ned. opdmi RBdit-2S

6- + lare painbd. wnopdizd RBdist.7.0
t lae aioned. optmized. RBdist=7.0

5-

4-

3-

2.

I

04
0 100 200 300 400

Number of active frames (CMF-OMF)

Figure 4.10. The effect of rollback distances on miss penalties

value need not be read. Similarly, if large grained events occur that typically

modify a large portion of the process state, search distances are also short, so the

unoptimized approach is preferred. These results indicate that the unoptimized

strategy is adequate, and in fact preferred, in many situations that are expected to

arise in practice. If large stacks and small grained events may arise, an adaptive

strategy could be used in which the optimization is enabled if it appears that long

searches are taking place.

68

4.6 Performance of the Rollback Operation

Two aspects of the rollback history are of particular interest: the number of the

entries that must be updated on each rollback and the size of the RBHistory stack.

To economize on circuitry, only the top portion of the RBH stack is maintained in

the RBC; the rest of it is stored in memory. Those entries stored in the RBC can be

updated in parallel, while those stored in memory must updated sequentially using

RBC microcode. Therefore, the number of entries updated on a rollback gives an

indication of the number of entries that should be maintained in the RBC.

Experiments were performed across a wide range of rollback scenarios. The

results are shown in figure 4.11. In these simulation experiments, the average

number of updated entries is less than 2 on each rollback. A minimum of 1 entry

is always updated., and typically only 2 to 3 entries are updated on each rollback:

these results indicate that only a few entries need to be buffered in the RBC.

Alternatively, it is not unreasonable not to buffer any entries in the RBC, and

perform the entire update operation in microcode. These experiments also indicate

that the size of the rollback history stack is usually only a few tens (about 20 to

40) of entries.

4.7 Overall Performance

The simulation results indicate that when compared to a conventional cache

that does not perform any state saving functions, the RBC suffered a loss of 0.01

to 2.41 percent in hit rate (for those with reasonable event rates, such as 8, 16).

and required 1.5 to 3.0 additional memory access on READ and WRITE misses to

locate the MRV frame. Of course, actual hit rate degradation and miss penalties are

highly application dependent; nevertheless, the simulation results give an indication

of expected performance.

69

Size and Updated Entries of RBHistory Stack
Number of Entries

* tmnbr of entries u4dated, RBdist=2.5
o max size of the RBH stck, RBdist=2.5
0 numbe of auries updated, RBdist=7.0
x max size of the RBH stick, RBdxst=7.0

20.

10.

0 -

0 10 20 30

Event Rate

Figure 4.11. The size of the RBH stack and the number of updated entries on each
rollback

70

The average memory access time for a cache memory system is PhitTcache + (1.0-

Pht)Tmemor. where Phit is the probability of a cache hit, and Tche and Temory, are

the access time to the cache and main memory, respectively. For example, consider

a design based on a 30 MHz INMOS Transputer, e.g., the IMS-T800 [16]. Assume

cache hits can be processed without introducing wait states (for the transputer,

this implies an access time T.h, of 100 nanoseconds.). Assume references to main

memory require 200 nanoseconds (Temor), and misses in the RB Cache incur an

additional 200 nanosecond penalty. The written bits and tags are assumed to be

stored in a dedicated., fast memory to prevent the miss penalty from becoming

excessively large. From figure 4.3, it can be seen that for an event rate of 11.4,

average rollback distance of 2.2, and hit rate of 95.847c, the degradation in hit rate

is 0.25%. The average memory access time for the cache is 104.16 nanoseconds

(0.9584 * 100 + (1 - 0.9584) * 200). The RBC has an average memory access time

113.23 nanoseconds (0.9559 * 100 + (1 - 0.9559) * (200 + 200)). This yields an overall

increase in the average memory access time of 8.7%.

Further, it should be pointed out that most memory references do not reference

version controlled memory; instruction references, accesses to local variables that

do not persist from one event to the next, and code associated with the Time Warp

mechanism itself (e.g., for manipulation of input queues; these references constitute

a very significant portion of the computation for fine grained events) bypass the

rollback chip completely. When taking this into account, overall performance

using the RBC will be virtually indistinguishable from that of a CPU with a

conventional cache. For instance, if 10% of the memory references access version

controlled memory, then the overall cost of state saving in the rollback chip using

the parameters listed above is only a 0.87% degradation in performance.

Repeating this calculation for the remaining data points in figures 4.3 and 4.4

yields the curves shown in figure 4.12. The cost of state saving and rollback using

71

Overhead of Using the Rollback ChipOverhead (Percent)
1 5 - N N & F 9 1 2 V 9 0 04" I , .9 . . , ,t -t "- 1

o aall prained, event rale-i 1.4. RBdist=2.2
" nUall paind event rae-17.3, Rldist=2.5

x lae pained. event rate-2.4, RBdsz&=2.6
V hlge pained, event rae-10.0. RBdist=25
* lare gained, event rae=26.4, RBdist=2.S

10-

5-

0.
70 80 90 100

Hit Rate in ConvenLional Cache (Percent)

Figure 4.12. Overall degradation of using the RBC

the RBC is plotted as a function of the hit rate in the conventional cache. As

before, Teach, is assumed to be 100 nanoseconds, Tmor, is 200 nanoseconds. and

the additional miss penalty in the RBC is 200 nanoseconds. The curves for short

rollback distances (averaging 2.3-2.5 events) are shown; those for longer distances

are similar. The curves for small grained events assume 10% of the memory

references access the RBC, while those for larger grained events assume 2517 (a

smaller percentage of references are due to Time Warp overhead as the granularity

increases).

RBC performance improves as the hit rate in the cache improves because perfor-

mance degradation in the RBC only occurs on misses. Further, as noted earlier, hit

72

rate degradation in the RB cache is diminished as the absolute hit rate improves.

Today, conventional cache memory systems routinely achieve hit rates well above

90%. Therefore, it can be expected that the cost of state saving using the rollback

chip will typically be only a few percent of processor performance. The RBC will

further enhance system performance by performing memory reclamation in parallel

with the CPU.

CHAPTER 5

IMPLMENTATION OF THE RBC

A block diagram of one possible implementation of a multicomputer node using

the rollback chip is shown in figure 5.1. The CPU provides the computation power

for the node and circuitry for interprocessor communications (possibly implemented

Control Unit
RB-Cache

RB-
History

WVB-Memory - U

Addr-Mux

Conv.

Cache Bulk-
Memory

CPU
Memory
Controller

Figure .5.1. Configuration for each node of the simulation engine.

74

as a separate coprocessor). In this design, the CPU has a conventional cache

associated with it to hold instructions and local (non-VCM) variables. This reduces

memory contention with the RBC; the latter performs storage reclamation activities

in parallel with the CPU. Alternatively, the mark frame stack could be stored in

a separate physical memory from that holding instructions and local data. Bulk

memory contains conventional dynamic RAM. The rollback chip hardware includes:

" The control unit (e.g., a microcode sequencer and ROM) to implement storage

reclamation and other miscellaneous functions.

" The RB cache, including circuits for implementing the rollback invalidation

and associative search functions.

" lWritten bit memory, implemented with fast static RAM. The RBH stack

should also be stored here or in a separate high speed memory.

" .4 memory management unit (,1LMMU) to implement the dynamic memory al-

location scheme.

" One or more RBHistory un ts, which buffer the top portion of the RBH stack.

and provide circuitry to allow rollback updates to be performed rapidly.

With the current technology, the RBC contains too much circuitry to be imple-

mented as a single chip. However, excluding the static RAM portions of the chip.

it could be implemented as a chip set of perhaps two or three VLSI components.

Assuming circuits densities continue to grow as they have in the past, a single chip

implementation of the RBC can be expected within a few years.

Existing commercial products can be used to implement the MMU. Similarly.

the control unit could be easily implemented using off-the-shelf parts. Custom

integrated circuits are required to perform the cache invalidation function and the

RBHistory update.

75

5.1 The CPU

Pragmatic considerations make it highly desirable to use an off-the-shelf micro-

processor in the simulation engine node. Many modern microprocessors contain an

on-chip data cache. The RBC can be used with such components if appropriate

precautions are taken. The most straightforward solution is to ensure that version

control memory is never cached, or to simply disable the cache completely. Alter-

natively, the on-chip cache would have to be invalidated when rollback occurred.

Further, if the microprocessor's cache use a copy-back policy, the cache would have

to be flushed before each MARK operation. Similarly, for any processor that is used.

one must ensure that internal processor registers are written to memory before each

MARK operation if they must be restored on rollback.

Some microprocessors also contain an on-chip memory management unit. In this

case, the RBC would have to reside between the MMU and physical memory, and

receive physical memory addresses. The RBC assumes, however, that each version

controlled memory occupies a contiguous portion of the address space. Therefore,

the MMU address mapping would have to be controlled to ensure that this condition

is not violated.

5.2 The Control Unit

The control unit is a microcoded engine that implements certain RBC oper-

ations. The control unit manages registers such as the OMF, CMF and CRBI

registers. The registers must be swapped on context switches, or multiple banks

of registers can be used. Also, the control unit implements the fossil collection

and archiving of data. Functions whose performance are critical to the overall

efficiency of the RBC, however, e.g., searches for MRV frames, are implemented

with dedicated hardware.

76

5.3 The RB Cache

Associative searches are performed on the PID and Line fields of the RB cache.

Conventional data cache hardware is used to implement this function. The MRV

field of the cache must be compared with the destination frame of each rollback to

determine whether the entry should be invalidated. The invalidations are performed

on all entries simultaneously. The comparators embedded in the MRV and address

(PID and Line) fields are enabled only when the Valid bit of that entry is set.

5.4 The RBHistory Stack

Circuitry similar to the invalidation circuit in the RB cache can be used to

update the RBHistory stack. While the bulk of the RBHistory stack is stored in

conventional static RAM. the top portion of the stack (TOS) is stored in a custom

chip.

When a rollback occurs, each TOS register is replaced by the minimum of the

value stored in that register and the destination of the rollback. This operation is

performed in parallel by the comparison logic embedded in the TOS registers. If

all of the TOS registers are modified, the control unit sequentially updates as much

of the RBH stack as necessary. Finally, the oldest TOS register is then written to

memory, and overwritten by the constant infinity. The simulation results reported

earlier indicate that only a modest number of TOS registers are required (e.g., 8

or 16) to allow update operation to be confined to within the custom RBHistory

circuit.

5.5 Overall Operation of the RBC

The CPU initiates the RESET, MARK, ROLLBACK. and ADVANCE operation

by writing into the control registers. These operations invoke microcode sequences

77

that implement the operations. Details of the implementation of these operations

are described in the code for the RBC simulator which is included as an appendix.

Memory READ and WRITE operations are implemented with dedicated cir-

cuitry rather than microcode to maximize performance. Each memory operation

to VCM initiates an associative search in the cache. If a hit occurs, the data is

either returned or overwritten as described earlier; otherwise, the WB memory is

scanned to determine the MRV frame, and memory operations to the MRV data

stored in bulk memory are performed.

CHAPTER 6

CONCLUSION

A special purpose component, the rollback chip, is proposed to offload the state

saving and rollback overhead in the Time Warp parallel simulation algorithm. It

is a key component of a special purpose, discrete event simulation engine based on

the Time Warp paradigm.

The functionality of the rollback chip has been described in detail, and possible

optimizations are suggested. Based on the experience with the rollback chip, the

following design recommendations are suggested:

1. A write-through policy should be used. Using copy-back adds a significant

amount of complexity to the design, and offers only a marginal performance

advantage (if any).

2. The MRV frame number (rather than a block of written bits) should be stored

in each cache entry. The latter again adds complexity to the design that is not

justified by the expected improvement in performance.

3. Guidelines used in conventional cache design should be used to determine the

RB cache organization (directed mapped, set associative, or fully associative)

and line length.

4. Although use of the LastWA variable to indicate the latest written working

area may reduce the search distance on some misses, the necessity of this

optimization is questionable, especially if mark frame stacks do not grow to

very large sizes.

79

5. The RBHistory chip need only buffer a few entries to reduce the time to update

it on rollback. Eliminating the RBHistory chip completely and implementing

the update operation completely in microcode is not an unreasonable alterna-

tive.

6. Fossil collection should be performed in parallel with other RBC operations to

enhance performance.

In addition to the above results, other important aspects used in the RBC include

the RBHistory mechanism and the use of virtual memory to avoid the need for

excessive amounts of memory.

Simulation experiments were performed across a wide range of rollback scenarios.

and performance data were collected and analyzed. These results are encouraging.

indicating that the overall cost of implementing state saving and rollback using the

RBC is only a few percent in performance. These results apply even when state

saving and rollback occur frequently and version controlled memory is large.

In short, the rollback chip allows parallel programs to exploit the advantages

of optimistic concurrency control algorithms using Time Warp while avoiding the

overheads associated with state saving and rollback.

REFERENCES

[1] Aahlad, Y., and Browne, J. C. Balanced Protocols for Sequencing Distributed
Computations. Tech. Rep. TR-87-39, Computer Science Dept., University of
Texas at Austin, Aug. 1987.

[2] Badal, D. Z. The Distributed Deadlock Detection Algorithm. ACM Trans. on
Computer Systems 4, 4 (November 1986), 320-337.

[3] Chandak, A., and Browne, J. C. Vectorization of Discrete Event Simulation.
Proceedings of the 1983 International Conference on Parallel Processing (Au-
gust 1983), 359-361.

[4] Chandy, K. M., and Misra, J. Conditional Knowledge as a Basis for Distributed
Simulation. Tech. Rep. 5251:TR:87, Computer Science Dept., California
Institute of Technology, 1988.

[5] Chandy, K. M., and Misra, J. Distributed Simulation: A Case Study il
Design and Verification of Distributed Programs. IEEE Trans. on Software
Engineering SE-5, 5 (September 1979), 440-452.

[6] Chandy, K. M., and Misra, J. Termination Detection of Diffusing Computa-
tions in Communucating Sequential Processes. ACM Trans. on Programming
Languages and Systems 4, 1 (January 1982), 37-43.

[7] Comfort. J. C. The Simulation of a Master-Slave Event Set Processor.
Simulation 42, 3 (March 1984), 117-124.

[8] Denneau, M. M. The Yorktown Simulation Engine: Architecture and Hard-
ware Description. In Proc. 19th Design Automation Conference (June 1982).
pp. 55-59.

[9] Dijkstra, E. W., and Scholten, C. S. Termination Detectior of Diffusing
Computations. Information Processing Letters 11, 1 (August 1980), 1-4.

[10] Feridun, A. M., and Shin, K. G. A Fault-Tolerant Multiprocessor System With
Rollback Recover Capabilities. IEEE Computer Society (1981), 283-298.

[il] Franklin, M. A., Wann, D. F., and Wong, K. F. Parallel Machines and Al-
gorithms for Diecrete-Event Simulation. Proceedings of the 1984 International
Conference on Parallel Processing (August 1984), 449-458.

[12] Fujimoto, R. M. Lookahead in Parallel Discrete Event Simulation. Proceedings
of the 1988 International Conference on Parallel Processing (August 1988).

95

[13) Fujimoto, R. M. Private Communication. September 1988.

[14] Fujimoto, R. M., Tsai, J. J., and Gopalakrishnan, G. The Roll Back
Chip: Hardware Support for Distributed Simulation Using Time Warp. Tech.
Rep. UU-CS-TR-87-025, Dept of Computer Science, Univ. of Utah, Salt Lake
City, UT 84112, October 1987.

[15) Heidelberger, P. Statistical Analysis of Parallel Simulations. 1986 Winter

Simulation Conference Proceedings (December 1986), 290-295.

[16] INMOS Limited. Transputer Reference Manual. Prentice Hall, 1988.

[17] Jefferson, D. Private communication. May 1988.

[18] Jefferson, D., and Sowizral, H. Fast Concurrent Simulation Using the Time
Warp Mechanism, Part I: Local Control. Tech. Rep. N-1906-AF, RAND
Corporation, December 1982.

[19] Jefferson, D. R. Virtual Time. ACM Transactions on Programming Languages
and Systems 7, 3 (July 1985), 404-425.

[20] Lee, P. A.. Ghadi, N., and Heron, K. A Recovery Cache for the PDP-11. IEEE
Trans. on Computers C-29, 6 (June 1980), 546-549.

[21] Lee, Y. H., and Shin, K. G. Design and Evaluation of a Fault-Tolerant
Multiprocessor Using Hardware Recovery Blocks. IEEE Trans. on ComputCrs
C-33. 2 (February 1984), 113-124.

[22] Misra. J. Distributed-Discrete Event Simulation. ACM Computing Surr'ys
18, 1 (March 1986), 39-65.

[23] Pfister. G. F. The Yorktown Simulation Engine: Introduction. In Proc. 19th
Design Automation Conference (June 1982), pp. 51-54.

[24] Pfister, G. F., and P., K. E. Software Support for the Yorktown Simulation
Engine. In Proc. 19th Design Automation Conference (June 1982), pp. 60-64.

[25] Reed, D. A., Malony. A. D., and McCredie, B. D. Parallel Discrete Event Sim-
ulation Using Shared Memory. IEEE Transactions on Softwure Engineering
14, 4 (April 1988), 541-553.

[26] Smith, A. Cache Memories. ACM Computing Survey 14. 3 (September 1982).
473-530.

[27] Takasaki, S., Sasaki, T., Nomizu, N., Koike, N., and Ohmori, K. Block-Level
Hardware Logic Simulation Machine. IEEE Trans. on Computer-Aided Design
(January 1f,87), 46-54.

[28] Zycad Corporation. The Zycad Logic Evaluator: Product Description. Zycad
Corp., Roseville Mn., 1983.

